0

WHY THIS MATTERS IN BRIEF

Just a few countries control the supply of the world’s Lithium, and in today’s odd geopolitical world that’s an issue, so the race is on to eliminate Lithium from batteries.

 

Love the Exponential Future? Join our XPotential Community, future proof yourself with courses from XPotential University, read about exponential tech and trendsconnect, watch a keynote, or browse my blog.

The limitations of Lithium-Ion (LiON) batteries, which have been powering our portable gadgets for three decades now and setting some of them on fire, are becoming clear so the race to replace them with something new is well underway.

 

RELATED
Companies have a plan to fix blockchain's massive energy problem

 

Driven in part by high Lithium prices as Electric Vehicles suck up supplies, and also by the fact that just three countries, including most notably China, control over 85% of the supply of world’s Cobalt and Lithium – at least until mining Lithium from seawater becomes commercially viable – leaders in the EU, Japan, and US are busy looking for alternatives so they aren’t held over a barrel by the likes of China in the future.

Magnesium-ion technology might offer one alternative, and Zinc-ion tech another. Estimated time of arrival? Sometime after 2030.

Cambridge University, engineering colleges in Denmark and Israel as well as German and Spanish research organizations have formed the European Magnesium Interactive Battery Community, dubbed E-Magic.

 

RELATED
Researchers find evidence that ancestors memories are passed down in DNA

 

The consortium says its objective is to develop “a disruptive scientific and technical approach for next-generation, high-energy-density and environmentally friendly rechargeable magnesium batteries.”

With financial support from the European Union, it intends to pack 1,000 watts of energy density into a liter worth of a Magnesium-ion battery. That is twice the punch of the old LiON warhorse, first commercialised in 1991 by Sony.

Three decades ago, these miracles offered us much more storage capacity than the nickel-hydrogen and lead-acid batteries we had grown used to. They came to power our Walkmans and laptops, then our iPods and smartphones. They have even made their way into electric vehicles and electric aircraft. The researchers who made the key LiON discoveries were awarded the Nobel Prize in chemistry in 2019. The technology remains the top choice for grid scale storage batteries.

 

RELATED
New nanomaterial exploits radiation to create more powerful nuclear reactors

 

The main weakness is also still with us – Lithium makes for an expensive battery. LiON batteries are fine when it comes to powering our tablets, but as humanity moves more toward renewable energy sources, it needs a technology that can store much larger amounts of electricity at much lower cost points.

Systems that can store electricity from renewable sources must come down in price if the Earth’s inhabitants are to lose their addiction to fossil fuels and attempt to slow global warming. And the most expensive component of such a system is the battery.

Battery makers have already packed about as much power into LiON batteries as the technology can hold. And the key materials, Lithium and Cobalt, can only be found in a few locations. There are 16 million tons of proven Lithium reserves and 7 million tons of cobalt, but not all can be used for battery production.

 

RELATED
NASA partners with ICON to 3D print its future Moonbase

 

E-Magic has set its sights on magnesium, whose associated costs can be lowered way below those of Lithium. A Magnesium-ion cell uses magnesium metal in the negative electrode.

A magnesium ion carries two electrons as it travels inside a cell. Multicharged ions allow more electrons to be used for charging and discharging, so they can achieve twice the capacity of cells using lithium ions, each of which carries only one electron. E-Magic says it has succeeded in repeating the charge/discharge cycle of a magnesium-ion battery more than 500 times.

E-Magic intends to improve the quality of the electrolytic solution that carries ions and come up with more efficient electrode materials. Although its batteries do not perform as well as lithium-ion batteries, they have enough potential to bet resources on.

 

RELATED
Paper made from stone is transforming the paper industry

 

In the US, researchers at the Toyota Research Institute of North America and at the University of Houston have developed a new type of Magnesium-ion battery in which an organic compound is used in the positive electrode and a mass of boron is used in the electrolyte, in which ions move.

At this point, the battery’s charge cycle is a little over 200. That’s not a lot, but “we now see a direction for developing high-performance batteries with high stability,” the researchers said.

In Japan, Kiyoshi Kanamura, a professor at Tokyo Metropolitan University, developed a battery that uses manganese oxide in the positive electrode and a magnesium metal in the negative electrode.

Like magnesium, zinc is also attracting attention. A new type of Zinc-ion battery developed by assistant professor Hiroaki Kobayashi and professor Itaru Honma of Tohoku University uses an aqueous solution in place of an organic solvent for the electrolyte. There is little risk of the battery catching fire, which was a problem when LiON batteries first arrived. The researchers aim to transfer the technology to battery manufacturers so that it can be used to store electricity from renewable energy sources.

 

RELATED
JPMorgan ventures into UK retail banking with its first digital only bank

 

Alternatives to LiON batteries must also be less expensive and more durable. Thus, it is imperative that researchers identify candidate elements to be used in electrodes, not just devise ideas for new electrode shapes.

If Lithium, positioned near the upper-left corner of the periodic table, is to be ditched, what would be a viable alternative to replace it? Magnesium, which is immediately below and to the right of Lithium on the table? Zinc or Aluminum, both of which are distant from Lithium on the table? Or perhaps an unexpected element? The race is on.

US researchers are working hard to come up with a multicharged-ion battery, but their Japanese counterparts have the lead, at least for now. Three decades ago, Japanese companies developed the market for LiON batteries, but today, Chinese and South Korean companies hold large shares of the market for these power packs. The battle for supremacy in multicharged-ion batteries is also about gaining a first mover advantage.

About author

Matthew Griffin

Matthew Griffin, described as “The Adviser behind the Advisers” and a “Young Kurzweil,” is the founder and CEO of the World Futures Forum and the 311 Institute, a global Futures and Deep Futures consultancy working between the dates of 2020 to 2070, and is an award winning futurist, and author of “Codex of the Future” series. Regularly featured in the global media, including AP, BBC, Bloomberg, CNBC, Discovery, RT, Viacom, and WIRED, Matthew’s ability to identify, track, and explain the impacts of hundreds of revolutionary emerging technologies on global culture, industry and society, is unparalleled. Recognised for the past six years as one of the world’s foremost futurists, innovation and strategy experts Matthew is an international speaker who helps governments, investors, multi-nationals and regulators around the world envision, build and lead an inclusive, sustainable future. A rare talent Matthew’s recent work includes mentoring Lunar XPrize teams, re-envisioning global education and training with the G20, and helping the world’s largest organisations envision and ideate the future of their products and services, industries, and countries. Matthew's clients include three Prime Ministers and several governments, including the G7, Accenture, Aon, Bain & Co, BCG, Credit Suisse, Dell EMC, Dentons, Deloitte, E&Y, GEMS, Huawei, JPMorgan Chase, KPMG, Lego, McKinsey, PWC, Qualcomm, SAP, Samsung, Sopra Steria, T-Mobile, and many more.

Your email address will not be published. Required fields are marked *