0

WHY THIS MATTERS IN BRIEF

AI’s that design and build other AI’s and AI models are on the rise, and they’re looking to automate data scientists out of a job.

 

Interested in the Exponential Future? Connect, download a free E-Book, watch a keynote, or browse my blog.

Artificial Intelligence (AI) platforms that can design and build other AI’s used to be science fiction until Google became the first company to build an AI that then went on to build its own “child” AI, and then a supercomputer built its own superior neural network in under a day. Over the past few years demand for data scientists and engineers has been off the charts. For example, the number of openings for machine learning and data engineers posted on recruiting web sites continues to grow by double digits annually, and those working in the field have been commanding ever-higher salaries.

 

RELATED
Super molecules help researchers create stable Qubits for Quantum computers

 

Joining the ranks of these desperately sought after techies though takes serious coding chops and you’ll need expertise in Python, as well as other programming languages. That combination – of job openings for data engineers along with the dominance of Python, therefore means that Python regularly makes the charts of most in demand coding languages.

So anyone contemplating a future in data science or machine learning needs to build up software engineering skills, right?

Wrong, says Ryohei Fujimaki, founder and CEO of DotData. Fujimaki has, for nearly a decade, been working to use AI to automate much of the job of the data scientist and create the equivalent of a Robo-Data Scientist.

We can, he says, “eliminate the skill barrier. Traditionally, the job of building a machine learning model can only be done by people who know SQL and Python and statistics. Our system automates the entire process, enabling less experienced people to implement machine learning projects.”

 

RELATED
Facebook 3D photos sources depth information straight from your camera

 

DotData, which is currently offering its tools as a cloud based service came out of NEC. Fujimaki, then a research fellow at the company, started thinking about automating machine learning in 2011 as a way to make the 100 or so data scientists on his research team more productive. He got side tracked for a few years, focused on commercializing an algorithm designed to make machine learning transparent, but in 2015 returned to the machine learning project.

“A typical use case for machine learning in the business world is prediction,” he said, “predicting demand of a product to optimize inventory, or predicting the failure of a sensor in a factory to allow preventive maintenance, or scoring a list of possible customers.”

“The first step in developing a machine learning model for prediction is feature engineering – looking at historical patterns and coming up with hypotheses,” he says. Feature engineering generally requires a team of people with a multitude of skill sets – data scientists, SQL experts, analysts, and domain experts. Typically, only after this team comes up with a set of hypotheses does machine learning step in, combining all those hypotheses to figure out how to best weigh them to come up with accurate predictions.

 

RELATED
New vertical farm in New Jersey revolutionises farming

 

In dotData’s system, AI takes over that first step, coming up and testing its own hypotheses from a set of historical data.

So, he says, “you don’t need domain experts or data scientists, and as a sub-product AI can explore many more hypotheses than human experts -millions instead of hundreds in a limited time window.”

Fujimaki’s group at NEC in 2016 let Japan’s Sumitomo Mitsui Banking Corporation (SMBC) test a prototype against a team using traditional data science tools.

“Their team took three months, our process took a day, and our results were better,” he says. NEC spun off the group in early 2018, remaining as a shareholder. Right now DotData has about 70 employees, about 70 percent of those are engineers and data scientists, along with a few dozen customers, Fujimaki says.

“In the near future,” Fujimaki says, “80 percent of machine learning projects can be fully automated. That will free up the most skilled, computer-science-PhD-type of data scientists, to focus on the other 20 percent.”

 

RELATED
Experts are starting to agree that AI will replace CEO's

 

Demand for data scientists overall won’t drop from what it is today, Fujimaki predicts, though the double-digit growth may slow. The job, however, will become more focused.

“Data scientists today are expected to be superman, good at too many things – statistics, and machine learning, and software engineering.”

And a new role is likely to emerge, he predicts.

“Call it the business data scientist, or the citizen data scientist. They aren’t machine learning people, they are more business oriented. They know what predictions they need, and how to use those predictions in their business. It will be useful for them to have basic knowledge of statistics, and to understand data structures, but they won’t need deep mathematical understanding or knowledge of programming languages. We can’t eliminate the skill barrier, but we can significantly lower it. And here will be many more potential people who will be able to do this.”

About author

Matthew Griffin

Matthew Griffin, described as “The Adviser behind the Advisers” and a “Young Kurzweil,” is the founder and CEO of the World Futures Forum and the 311 Institute, a global Futures and Deep Futures consultancy working between the dates of 2020 to 2070, and is an award winning futurist, and author of “Codex of the Future” series. Regularly featured in the global media, including AP, BBC, Bloomberg, CNBC, Discovery, RT, Viacom, and WIRED, Matthew’s ability to identify, track, and explain the impacts of hundreds of revolutionary emerging technologies on global culture, industry and society, is unparalleled. Recognised for the past six years as one of the world’s foremost futurists, innovation and strategy experts Matthew is an international speaker who helps governments, investors, multi-nationals and regulators around the world envision, build and lead an inclusive, sustainable future. A rare talent Matthew’s recent work includes mentoring Lunar XPrize teams, re-envisioning global education and training with the G20, and helping the world’s largest organisations envision and ideate the future of their products and services, industries, and countries. Matthew's clients include three Prime Ministers and several governments, including the G7, Accenture, Aon, Bain & Co, BCG, Credit Suisse, Dell EMC, Dentons, Deloitte, E&Y, GEMS, Huawei, JPMorgan Chase, KPMG, Lego, McKinsey, PWC, Qualcomm, SAP, Samsung, Sopra Steria, T-Mobile, and many more.

Comments

Your email address will not be published. Required fields are marked *