We now have the technology to beam sound directly into people’s ears, and future admen can’t wait to get hold of the tech.


Interested in the future and want to experience even more?! eXplore More.

In the future, if we futurists are to believed, which we crazy loons definitely shouldn’t be, then the world of outdoor advertising will be dominated by gigantic holograms, like the descendants of this one, the world’s first real hologram that I wrote about last year, and their messages will be beamed directly into our brains. However, until the latter sci fi technology appears advertisers it seems might have to rely on beaming their messages into our heads, or at least ears, using everything from personalised sound that only we can hear, or now laser beams.


This Mach 5 jet from Hermeus could be the first to have a 3D printed body


And this, along with some other tricks, is exactly what the new technology being developed by MIT does by using laser light to excite moisture in the air surrounding a target’s ear, causing it to quietly whisper a personal message from several metres away.

“Our system can be used from some distance away to beam information directly to someone’s ear,” says MIT team leader and physicist Charles M. Wynn. And you probably don’t need me to count off potential applications for such a device, which range from military applications, and non-lethal crowd control, something the Pentagon developed a similar laser to do last year, to targeted advertising, and pretty much anywhere else where ambient noise is a problem. And in case you’re worried about the whole ‘laser in your ear’ thing, the developers promise “it’s harmless.” Hmmmm.

“It is the first system that uses lasers that are fully safe for the eyes and skin to localise an audible signal to a particular person in any setting,” says Wynn.


Telsa vehicles will soon be connected to SpaceX's global space internet system


Technology that channels sound into a narrow field has been around for decades, but most of it uses speakers to intensify soundwaves or channel ultrasound within a small area. Although useful for keeping sound relatively confined, they often require the listener to be a relatively short distance from the source.

Optical technology based on lasers has the potential advantage of reduced spreading over a wide distance, with higher frequencies allowing it to carry much further – which is why the team have turned from speakers to lasers.

The heart of MIT’s new technology is a 1.9 micrometre Thulium laser. Thanks to a principle called the photoacoustic effect, water vapour in the air absorbs the laser’s emission, causing it to vibrate at an audible frequency.


NIST scientists say they've created an "unhackable quantum machine"


“This can work even in relatively dry conditions because there is almost always a little water in the air, especially around people,” says Wynn. “We found that we don’t need a lot of water if we use a laser wavelength that is very strongly absorbed by water. This was key because the stronger absorption leads to more sound.”

The team tested two methods for transmitting sound. The first simply varied the laser’s amplitude through a modulator in a continuous wave, creating vibrations that could be picked up by a microphone 2.5 metres (8 feet) away.

A second process ditched the modulator and used a mirror to sweep the laser back and forth over at the speed of sound in what’s known as dynamic photoacoustic spectroscopy, effectively creating louder waves by jiggling more water particles.


Hackers release Mirai into the wild


“There are trade-offs between the two techniques,” says opto-mechanical engineer Ryan Sullenberger. “The traditional photoacoustics method provides sound with higher fidelity, whereas the laser sweeping provides sound with louder audio.”

A potential disadvantage of the laser-wiggle method is it works at a very specific distance from the transmitter. Any closer, and the laser’s sweep will be too high-pitched. Any further, and the frequency drops below audibility.

Although it was only tested to a volume of 60 decibels, which is the level of a normal conversation, at a couple of metres, the researchers think they can scale up the distance and volume now they have proof of concept.

“We hope that this will eventually become a commercial technology,” says Sullenberger.


Snowdens smartphone app turns security on its head to protect "people at risk"


Which means in future someone could potentially beam whispers to your ear from significant distances… something that’s both slightly unnerving and exciting at the same time.

The research was published in OSA Publishing.

About author

Matthew Griffin

Matthew Griffin, described as “The Adviser behind the Advisers” and a “Young Kurzweil,” is the founder and CEO of the World Futures Forum and the 311 Institute, a global Futures and Deep Futures consultancy working between the dates of 2020 to 2070, and is an award winning futurist, and author of “Codex of the Future” series. Regularly featured in the global media, including AP, BBC, Bloomberg, CNBC, Discovery, RT, Viacom, and WIRED, Matthew’s ability to identify, track, and explain the impacts of hundreds of revolutionary emerging technologies on global culture, industry and society, is unparalleled. Recognised for the past six years as one of the world’s foremost futurists, innovation and strategy experts Matthew is an international speaker who helps governments, investors, multi-nationals and regulators around the world envision, build and lead an inclusive, sustainable future. A rare talent Matthew’s recent work includes mentoring Lunar XPrize teams, re-envisioning global education and training with the G20, and helping the world’s largest organisations envision and ideate the future of their products and services, industries, and countries. Matthew's clients include three Prime Ministers and several governments, including the G7, Accenture, Aon, Bain & Co, BCG, Credit Suisse, Dell EMC, Dentons, Deloitte, E&Y, GEMS, Huawei, JPMorgan Chase, KPMG, Lego, McKinsey, PWC, Qualcomm, SAP, Samsung, Sopra Steria, T-Mobile, and many more.

Your email address will not be published. Required fields are marked *