0

WHY THIS MATTERS IN BRIEF

Cows need to eat food, crops, fart alot, and need water and land, this new way to create cream just needs a factory space …

 

Love the Exponential Future? Join our XPotential Community, future proof yourself with courses from XPotential University, read about exponential tech and trendsconnect, watch a keynote, or browse my blog.

If you follow my blog you’ll know that we can already 3D print meat, make protein, soya, and “steaks” from air, and make dairy products without the cow, so it shouldn’t come as much of a surprise that now food researchers have developed a fat-free prototype of the much beloved whipped cream using bacteria instead of milk fat – in both velvety and stiffer creamy varieties. The concept also opens up the possibility of producing alternative whipped creams using beer brewing residues and plants, which increases sustainability.

 

RELATED
Sir Richard Branson becomes the first billionaire to almost reach space

 

Whipped cream is composed of 38% saturated fat, making it a not so fluffy caloric and climate issue as well. Therefore, the researchers set out to develop a low-fat, more sustainable alternative.

A delicious whipped cream needs to be versatile though. For a tart, it needs to be velvety, smooth, light, and airy. And at other times, it needs to be stiff enough to hold the shape of a cake for hours – the thing most special about whipped cream is its consistency.

 

The Future of Food by keynote speaker Matthew Griffin

 

“The most difficult aspect of developing an alternative food is getting the texture right. Whipped cream undergoes a unique transformation that occurs in a complex system where a high saturated fat content makes it possible to whip the cream stiff,” explains Jens Risbo, an associate professor of the food science department at the University of Copenhagen. “So, how do we create an alternative where we avoid the high fat content, while still achieving the right consistency? This is where we need to think innovatively.”

 

RELATED
DeepMind's AI learns the rules as it goes so it can conquer the real world

 

For a number of years, Risbo and a group of researchers have been working on using lactic acid bacteria as tiny building blocks for creating food. They have now succeeded in illustrating their knowledge by creating a whipped cream in both fluffy and stiff versions.

“We usually associate bacteria with something to keep away from food. But here, we base a beloved food product on good bacteria found in nature. This has never been seen before. This is advantageous, both because it is a renewable resource grown in a tank, and because it creates a healthier, less energy dense, fat-free product,” says Risbo, who is the lead author of the study in Food Hydrocolloids.

Lactic acid bacteria are ubiquitous. Some live on plants, while others are found naturally on human and animal mucous membranes, as well as in their digestive tracts. In the food industry, these bacteria are used to culture yogurt and as a preservative for cold cuts. Here, they are put to work in an entirely new way – to serve as the building blocks of a food product, where they play the leading role.

 

RELATED
New micro-rocket will one day travel round your body fighting disease

 

Dairy-based whipped cream is formed as the fat globules in cream clump up during whipping, until the airy foam stabilizes and provides the strength necessary to stand and not let liquid drain out. This requires a lot of fat globules, which is why heavy whipping cream has a fat content of 38%.

While there are a number of non-dairy artificial whipped creams on the market, they are made from other saturated sources of fat, such as coconut or palm fat, which are imported from the tropics. Furthermore, they contain at least 25% fat. Finally, their production is usually complicated to manage and involves a long list of food additives.

“Here we only use four ingredients – water, bacteria, a bit of milk protein, and a single thickener. With these few ingredients, we’ve managed to make a fat-free product that can be whipped, peaks up, and retains the liquid,” explains Risbo.

 

RELATED
First of a kind AI malware learns and mimics its target systems behaviours to prevent detection

 

The researchers used two different lactic acid bacteria for the two versions of the bacteria-based foam, both of which are roughly the same size as the fat globules in dairy-based whipped cream. The differing surface properties of each bacteria provide the foams with different structures. One bacterial species, whose surface likes water, forms a weak network that produces a softer foam. The second bacterial species, which is more similar to fat, forms stronger networks and thus a stiffer foam that can stand in taller, pretty peaks.

Risbo points out that the bacteria-based foam is a proof-of-concept, which should not be seen as a stand-alone product, but considered as new knowledge that provides insight into how to create a similar food structure using non-dairy sources.

“We’ve shown that bacteria can be used to create the right structure. Now that we understand the context and have learned which surface properties are important, it opens up the possibility of using many other things from nature. This could be yeast residue from brewing, or perhaps small building blocks that we extract from plants. This would make the product very sustainable,” concludes Risbo.

 

RELATED
Gallium "heartbeat" discovery gives re-configurable electronics a boost

 

Additional researchers from the University of Copenhagen and Manchester Metropolitan University, UK, contributed to the work.

Source: University of Copenhagen

About author

Matthew Griffin

Matthew Griffin, described as “The Adviser behind the Advisers” and a “Young Kurzweil,” is the founder and CEO of the World Futures Forum and the 311 Institute, a global Futures and Deep Futures consultancy working between the dates of 2020 to 2070, and is an award winning futurist, and author of “Codex of the Future” series. Regularly featured in the global media, including AP, BBC, Bloomberg, CNBC, Discovery, RT, Viacom, and WIRED, Matthew’s ability to identify, track, and explain the impacts of hundreds of revolutionary emerging technologies on global culture, industry and society, is unparalleled. Recognised for the past six years as one of the world’s foremost futurists, innovation and strategy experts Matthew is an international speaker who helps governments, investors, multi-nationals and regulators around the world envision, build and lead an inclusive, sustainable future. A rare talent Matthew’s recent work includes mentoring Lunar XPrize teams, re-envisioning global education and training with the G20, and helping the world’s largest organisations envision and ideate the future of their products and services, industries, and countries. Matthew's clients include three Prime Ministers and several governments, including the G7, Accenture, Aon, Bain & Co, BCG, Credit Suisse, Dell EMC, Dentons, Deloitte, E&Y, GEMS, Huawei, JPMorgan Chase, KPMG, Lego, McKinsey, PWC, Qualcomm, SAP, Samsung, Sopra Steria, T-Mobile, and many more.

Your email address will not be published. Required fields are marked *