Scroll Top

Microbes can now make a rare in demand Cancer drug



Using bio-manufacturing and genetic engineering we are getting better at re-programming nature to make us all kinds of products, from armour to drugs.


Love the Exponential Future? Join our XPotential Community, future proof yourself with courses from XPotential University, read about exponential tech and trendsconnect, watch a keynote, or browse my blog.

As we continue to see bio-manufacturing, which is the use of biological organisms to produce new things, being used to make everything from new materials, including armour, to new drinks and drugs, a team from Denmark have just announced another breakthrough after they managed to make a rare plant based precursor molecule, that’s used as an anti-cancer drug, by using engineered yeast.


IBM's quantum computer turned up the noise to thrash a supercomputer in benchmark tests


A study describing the breakthrough was published in Nature.

“The yeast platform we developed will allow environmentally friendly and affordable production of vinblastine and the more than 3,000 other molecules that are in this family of natural products,” said project co-leader Jay Keasling, a senior faculty scientist at Lawrence Berkeley National Laboratory.


Watch the Future of Longevity and Work


“In addition to vinblastine, this platform will enable production of anti-addiction and anti-malarial therapies as well as treatments for many other diseases.” Keasling is a biochemical engineer who helped launch the now-booming field of synthetic biology when his team successfully transferred the genetic pathway to produce an antimalarial drug, artemisinin, from an herb called sweet wormwood to the laboratory workhorse microbe, E. coli. He is also a professor of Chemical & Biomolecular Engineering at UC Berkeley.


Intel Samsung show off their first ever expandable display


Vinblastine and another chemotherapy agent, vincristine, are both natural products of a pink-flowered plant called the Madagascar periwinkle. Their anti-cancer properties were first discovered in the 1950s, and in the decades since, they have become essential medicines. Vinblastine, which inhibits cell division, is used alongside other chemotherapy agents to treat multiple types of cancer, including lymphomas, testicular, ovarian, breast, bladder, and lung cancers. Vincristine inhibits white blood cell production and is a mainstay treatment for childhood lymphoblastic leukemia and non-Hodgkin lymphomas.

Vinblastine and vincristine belong to a group of botanical compounds called monoterpenoid indole alkaloids (MIAs) that have many useful medical applications. Unfortunately, this group is characterized by complicated atomic structures that are often impossible to replicate through synthetic chemistry. So, much like the production of artemisinin before Keasling’s breakthrough, making vinblastine and vincristine requires growing and harvesting huge quantities of the native plant to extract precursor molecules. It takes 500 and 2,000 kilograms of dried Madagascar periwinkle leaves to produce one gram of vinblastine and vincristine, respectively.


KFC embraces future of food, inks deal to sell 3D printed chicken nuggets


A team lead by Keasling and Michael Jensen, a DTU Biosustain researcher, began exploring the possibility of engineering a microbe-based production process for MIAs in 2015. The first step was to develop the pathway for making strictosidine, the foundational molecule that all monoterpene indole alkaloids are built from. For the new host organism, they turned to a common yeast strain that Keasling and others have successfully engineered to make many other plant-derived compounds including opiates, cannabinoids, and other anti-cancer drugs. (It’s also the same yeast humans have been using for centuries to brew beer and make bread.)

After meeting their goal of making strictosidine, they set out to produce vinblastine. They chose to start with this particular MIA-based drug because it is one of the most commonly used chemotherapeutics worldwide and it has been in shortage multiple times in recent years.

Yet even with the team’s vast combined expertise in their favor, they knew that making a monoterpenoid indole alkaloid was going to be a grand challenge.


Saudi Arabia doubles down on its vision for the world's largest floating city


“The 31-step vinblastine biosynthetic pathway, which wasn’t fully elucidated until 2018, is remarkably complex,” said first author Jie Zhang, a senior researcher at DTU Biosustain. “This study showcases the longest biosynthetic pathway refactored into a microbial cell factory to date, including 30 enzymatic steps to convert two molecules naturally made by the yeast into catharanthine and vindoline – the precursors of vinblastine.” To obtain a strain that could produce these molecules consistently and in sufficient quantities, Zhang noted that a total of 56 genetic edits were performed, including the addition 34 plant genes and multiple deletions, knock-downs (reductions in gene expression), and overexpression (boosting gene expression) of native yeast genes.

Now that they have unlocked the process for strictosidine and vinblastine production, the team hopes to modify their yeast to tackle production of other valuable MIAs, including vincristine, irinotecan, and topotecan. All four medicines are chemotherapies on the World Health Organization’s essential medicines list.


World first after scientists create artificial cells that react to their environment


“The pathway could also be augmented to produce new-to-nature MIAs, which may have improved pharmacological properties such as higher efficacy or fewer side effects,” said Zhang. “This will potentially enable us to explore the almost infinite chemical space with many new bioactivities.”

Related Posts

Leave a comment


1000's of articles about the exponential future, 1000's of pages of insights, 1000's of videos, and 100's of exponential technologies: Get The Email from 311, your no-nonsense briefing on all the biggest stories in exponential technology and science.

You have Successfully Subscribed!

Pin It on Pinterest

Share This