0

WHY THIS MATTERS IN BRIEF

In short? The faster we can create vaccines for diseases the fewer people that have to suffer or die from those diseases. Enough said?

 

Love the Exponential Future? Join our XPotential Community, future proof yourself with courses from XPotential University, read about exponential tech and trendsconnect, watch a keynote, or browse my blog.

During the COVID-19 pandemic we could have done with a tool like this one, which could have let us produce vaccines in just seven minutes, even though ultimately the COVID-19 vaccines were developed multiple times faster than any other vaccines in history – in most cases cutting five to ten year development cycles down to just 3 months. In the latest development though a new tool developed by teams of researchers from around the world speeds up development of vaccines and other pharmaceutical products by more than one million times while minimizing costs.

 

RELATED
Scientists successfully transferred memories between two snails

 

When searching for pharmaceutical agents such as new vaccines companies will routinely scan thousands of related candidate molecules, but now a new technique lets this to take place on the nano scale and dramatically minimizes the use of materials and energy. The work is published in the prestigious journal Nature Chemistry.

Now more than 40,000 different molecules can be synthesized and analyzed within an area smaller than a pinhead. The method, developed through a highly interdisciplinary research effort in Denmark, works by using soap-like bubbles as nano-containers. Then, using DNA nano-technology multiple ingredients can be mixed within the containers.

“The volumes are so small that the use of material can be compared to using one liter of water and one kilogram of material instead of using the entire volumes of all the water in the oceans to test material corresponding to the entire mass of Mount Everest. This is an unprecedented saving in effort, material, manpower, and energy,” says Nikos Hatzakis, Associate Professor at the University of Copenhagen.

 

RELATED
China trials a CRISPR vaccine for Cancer on humans

 

“Saving infinite amounts of time, energy and manpower would be fundamentally important for any synthesis development and evaluation of any future pharmaceuticals,” says PhD Student Mette G. Malle, lead author of the article, and currently Postdoc researcher at Harvard University.

The work has been carried out in collaboration between the Hatzakis Group, University of Copenhagen, and Associate Professor Stefan Vogel, University of Southern Denmark. The project has been supported by a Villum Foundation Center of Excellence grant. The resulting solution is named “single particle combinatorial lipidic nanocontainer fusion based on DNA mediated fusion” – abbreviated SPARCLD.

The breakthrough involves integration of elements from normally quite different disciplines: synthetic biochemistry, nanotechnology, DNA synthesis, combinational chemistry, and even Machine Learning which is an Artificial Intelligence (AI) discipline.

 

RELATED
British girl who died of cancer wins right to be cryogenically frozen

 

“No single element in our solution is completely new, but they have never been combined so seamlessly,” explains Nikos Hatzakis.

Crucially, the method provides results within just seven minutes.

“What we have is very close to a live read-out. This means that one can moderate the setup continuously based on the readings adding significant additional value. We expect this to be a key factor for industry wanting to implement the solution,” says Mette Malle.

The individual researchers in the project have several industry collaborations, yet they don’t know which companies may want to implement the new high-throughput method.

“We had to keep things hush-hush since we didn’t want to risk for others to publish something similar before us. Thus, we could not engage in conversations with industry or with other researchers that may use the method in various applications,” says Nikos Hatzakis.

 

RELATED
Google DeepMind is teaching AI to play Diplomacy before taking on the real thing

 

Still, he can name some possible applications: “A safe bet would be that both industry and academic groups involved in synthesis of long molecules such as polymers could be among the first to adopt the method. The same goes for ligands of relevance for pharmaceutical development. A particular beauty of the method that it can be integrated further, allowing for direct addition of a relevant application.”

Here, examples could be RNA strings for the important biotech tool CRISPR, or an alternate for screening and detecting and synthesizing RNA for future pandemic vaccines.

“Our setup allows for integrating SPARCLD with post-combinatorial readout for combinations of protein-ligand reactions such as those relevant for use in CRISPR. Only, we have not been able to address this yet, since we wanted to publish our methodology first.”

About author

Matthew Griffin

Matthew Griffin, described as “The Adviser behind the Advisers” and a “Young Kurzweil,” is the founder and CEO of the World Futures Forum and the 311 Institute, a global Futures and Deep Futures consultancy working between the dates of 2020 to 2070, and is an award winning futurist, and author of “Codex of the Future” series. Regularly featured in the global media, including AP, BBC, Bloomberg, CNBC, Discovery, RT, Viacom, and WIRED, Matthew’s ability to identify, track, and explain the impacts of hundreds of revolutionary emerging technologies on global culture, industry and society, is unparalleled. Recognised for the past six years as one of the world’s foremost futurists, innovation and strategy experts Matthew is an international speaker who helps governments, investors, multi-nationals and regulators around the world envision, build and lead an inclusive, sustainable future. A rare talent Matthew’s recent work includes mentoring Lunar XPrize teams, re-envisioning global education and training with the G20, and helping the world’s largest organisations envision and ideate the future of their products and services, industries, and countries. Matthew's clients include three Prime Ministers and several governments, including the G7, Accenture, Aon, Bain & Co, BCG, Credit Suisse, Dell EMC, Dentons, Deloitte, E&Y, GEMS, Huawei, JPMorgan Chase, KPMG, Lego, McKinsey, PWC, Qualcomm, SAP, Samsung, Sopra Steria, T-Mobile, and many more.

Your email address will not be published. Required fields are marked *