0

WHY THIS MATTERS IN BRIEF

As your understanding of the brain and neuroscience improves memory is increasingly looking as editable as a Microsoft Word document.

 

Interested in the Exponential Future? Connect, download a free E-Book, watch a keynote, or browse my blog.

Over the past number of years I’ve reported on a wide variety of neuroscience breakthroughs that have let us upload knowledge to human brains, edit, erase, and store human memories, create telepathic human links and stream our thoughts to TV, and, of course, transfer memories between snails and teach song birds to sing songs by implanting artificial memories of their father’s teaching them how to sing. Now, researchers have managed to create yet more artificial memories in mice, demonstrating that the technology and the techniques behind the sci-fi like capability are becoming increasingly well known, established, and replicable – something that will only continue to accelerate and advance as time goes by.

 

RELATED
AI has learnt to predict heart attacks more accurately than doctors

 

All animals learn from their personal interactions with the world and their memories of those experiences help produce and guide their behaviours, so it shouldn’t come as a surprise that as a result scientists have long been able to assert that experience and memory are inexorably linked. Or at least they were before researchers managed to figure out how to break that link and create artificial memories that then affect behaviours.

In a recent report, using mice, researchers reverse engineered a specific natural memory by mapping the brain circuits underlying its formation, and then they “trained” another mouse by stimulating brain cells in the pattern of the natural memory. By doing so they managed to create an artificial memory that the animals retained and recalled in the same way they’d recall a true memory.

Memories are essential to the sense of identity that emerges from the narrative of personal experience. This study is remarkable because it demonstrates that by manipulating specific circuits in the brain, memories can be separated from that narrative and formed in the complete absence of real experience. The work also shows that brain circuits that normally respond to specific experiences can be artificially stimulated and linked together in an artificial memory. That memory can be elicited by the appropriate sensory cues in the real environment.

 

RELATED
DeepMind's AI now has human like 3D vision

 

The research provides some fundamental understanding of how memories are formed in the brain and is part of a burgeoning science of memory manipulation that includes the transfer, prosthetic enhancement and erasure of memory, and these efforts could have a tremendous impact on a wide range of individuals, from those struggling with memory impairments to those enduring traumatic memories, and they also have broad social and ethical implications.

In the recent study, the natural memory was formed by training mice to associate the smell of cherry blossoms with a foot shock, which they learned to avoid by passing down a rectangular test chamber to another end that was infused with a different odour, caraway. The caraway scent came from a chemical called carvone, while the cherry blossom scent came from another chemical, acetophenone. The researchers found that acetophenone activates a specific type of receptor on a discrete type of olfactory sensory nerve cell.

They then turned to a sophisticated technique, optogenetics, a technology that uses light to help manipulate everything from memory to gene expression, to activate those olfactory nerve cells. With optogenetics, light-sensitive proteins are used to stimulate specific neurons in response to light delivered to the brain through surgically implanted optic fibers.

 

RELATED
Breakthrough healthcare test screens for all known diseases at once

 

In their first experiments, the researchers used transgenic animals that only made the protein in acetophenone-sensitive olfactory nerves. By pairing the electrical foot shock with optogenetic light stimulation of the acetophenone-sensitive olfactory nerves, the researchers taught the animals to associate the shock with activity of these specific acetophenone-sensitive sensory nerves. By pairing the electrical foot shock with optogenetic light stimulation of the acetophenone-sensitive olfactory nerves, the researchers taught the animals to associate the two. When they later tested the mice, they avoided the cherry blossom odour.

These first steps showed that the animals did not need to actually experience the odour to remember a connection between that smell and a noxious foot shock. But this was not a completely artificial memory, because the shock was still quite real. In order to construct an entirely artificial memory, the scientists needed to stimulate the brain in such a way as to mimic the nerve activity caused by the foot shock as well.

Earlier studies had shown that specific nerve pathways leading to a structure known as the Ventral Tegmental Area (VTA) were important for the aversive nature of the foot shock. To create a truly artificial memory, the researchers needed to stimulate the VTA in the same way as they stimulated the olfactory sensory nerves, but the transgenic animals only made the light-sensitive proteins in those nerves. In order to use optogenetic stimulation, they stimulated the olfactory nerves in the same genetically engineered mice , and they employed a virus to place light-sensitive proteins in the VTA as well. They stimulated the olfactory receptors with light to simulate the odour of cherry blossoms, then stimulated the VTA to mimic the aversive foot shock. The animals recalled the artificial memory, responding to an odour they had never encountered by avoiding a shock they had never received.

 

RELATED
New hydrogel that mimics cartilage could transform knee surgeries

 

For a long time, it has been a mystery how memories are formed in the brain—and what physical changes in the brain accompany their formation. In this study, the electrical stimulation of specific brain regions that led to a new memory also activated other brain regions known to be involved in memory formation, including an area called the basolateral amygdala. Because nerve cells communicate with one another through junctions called synapses, it has been assumed that changes in synaptic activity account for the formation of memories.

In simple animals, such as the sea slug Aplysia, memories can be transferred from one individual to another using RNA extracted from the one who experienced them. The RNA contains the codes for proteins made in the nerves of the animal associated with the memory. Memories have been partially transferred in rodents by using recordings of electrical activity of a trained animal’s memory center , the hippocampus, to stimulate similar patterns of nerve activity in a recipient animal.

This process is similar to the new report described here, in that stimulating the electrical activity of specific neural circuits is used to elicit a memory. In the case of memory transfer, that pattern came from trained animals, whereas in the optogenetics study, the pattern of electrical activity associated with the memory was built de novo within brain of the mouse. This is the first report of a completely artificial memory, and it helps establish some fundamental understanding of how memories may be manipulated.

 

RELATED
Elon Musk gets ready to unveil the future of urban transportation

 

Research into memory and efforts to manipulate it have progressed at a rapid pace. A “memory prosthetic” designed to enhance its formation and recall by electrical stimulation of the memory center in the human brain has been developed with support from DARPA. In contrast, memory erasure using what has been nicknamed the Eternal Sunshine drug (zeta inhibitory peptide, or ZIP) – after Eternal Sunshine of the Spotless Mind, a Hollywood movie with a mnemonic theme—is being developed to treat recollections of chronic pain.

There are legitimate motives underlying these efforts. Memory has been called “the scribe of the soul,” and it is the source of one’s personal history. Some people may seek to recover lost or partially lost memories. Others, such as those afflicted with post-traumatic stress disorder or chronic pain, might seek relief from traumatic memories by trying to erase them, and the methods used here to create artificial memories will not be employed in humans anytime soon – none of us are transgenic like the animals used in the experiment, nor are we likely to accept multiple implanted fiber-optic cables and viral injections.

 

RELATED
Bioengineers hack biology to turn living tissue into any shape they want

 

Nevertheless, as technologies and strategies evolve, the possibility of manipulating human memories becomes all the more real. And the involvement of military agencies such as DARPA invariably renders the motivations behind these efforts suspect. Are there things we all need to be afraid of or that we must or must not do? The dystopian possibilities are obvious.

Creating artificial memories brings us closer to learning how memories form and could ultimately help us understand and treat dreadful diseases such as Alzheimer’s, but similarly memories cut to the core of our humanity, and we need to be vigilant that any manipulations are approached ethically.

About author

Matthew Griffin

Matthew Griffin, described as “The Adviser behind the Advisers” and a “Young Kurzweil,” is the founder and CEO of the World Futures Forum and the 311 Institute, a global Futures and Deep Futures consultancy working between the dates of 2020 to 2070, and is an award winning futurist, and author of “Codex of the Future” series. Regularly featured in the global media, including AP, BBC, Bloomberg, CNBC, Discovery, RT, Viacom, and WIRED, Matthew’s ability to identify, track, and explain the impacts of hundreds of revolutionary emerging technologies on global culture, industry and society, is unparalleled. Recognised for the past six years as one of the world’s foremost futurists, innovation and strategy experts Matthew is an international speaker who helps governments, investors, multi-nationals and regulators around the world envision, build and lead an inclusive, sustainable future. A rare talent Matthew’s recent work includes mentoring Lunar XPrize teams, re-envisioning global education and training with the G20, and helping the world’s largest organisations envision and ideate the future of their products and services, industries, and countries. Matthew's clients include three Prime Ministers and several governments, including the G7, Accenture, Aon, Bain & Co, BCG, Credit Suisse, Dell EMC, Dentons, Deloitte, E&Y, GEMS, Huawei, JPMorgan Chase, KPMG, Lego, McKinsey, PWC, Qualcomm, SAP, Samsung, Sopra Steria, T-Mobile, and many more.

Your email address will not be published. Required fields are marked *