0

WHY THIS MATTERS IN BRIEF

Solid state batteries are seen by most people as the “Batteries of the Future” and they’re getting better, bigger, and denser …

 

Love the Exponential Future? Join our XPotential Community, future proof yourself with courses from XPotential Universityconnect, watch a keynote, or browse my blog.

Lithium-ion (LiON) batteries recently got their own 3D printed upgrades to make them 400% more energy dense, and you already know that traditional LiON batteries are everywhere – in smartphones, laptops, electric vehicles, and even in your wristwatch. Yet as electronics become increasingly sophisticated, and as more cars, buses, and trucks run on battery power, scientists are working to develop new battery chemistries that are lighter weight, more energy dense, and ideally safer than today’s champion technology. The next frontier, they say, is what many are calling the “Jesus battery” – AKA Solid State batteries. And perhaps 3D printed ones, at that.

 

RELATED
US Navy's biofuel powered Tomahawk missiles open door to sustainable rocket travel

 

Recently, 3D printing startup Sakuu announced that they’d developed a solid state battery they claim “equals or betters” the performance of current LiON batteries. And that’s a big claim that has goten many people excited. The small 3 Ampere-hour (Ah) cell, which is about the capacity of three AAA alkaline batteries, was produced using the company’s 3D printing manufacturing platform that lets the company deposit multiple materials onto a thin, single layer.

“To get the highest energy density batteries we want to minimize the volume of all the elements that don’t have anything to do with the performance of the battery,” said Karl Littau, Chief Technology Officer of Sakku. “That’s the kind of thing that 3D printing really enables.”

 

RELATED
Wirelessly charged smart underpants hit the floor at CES

 

Like many solid state designs Sakuu’s battery cell involves a lithium-metal anode, as well as a ceramic electrolyte that separates the anode and cathode. LiON batteries by contrast use organic liquids as electrolytes which heightens the risk of batteries catching on fire.

The company’s 3D printing platform is based on the binder jet printing process developed by MIT. In binder jetting, a liquid agent is deposited onto a thin bed of powder particles; currently, Sakuu says it can combine metal jetting and ceramic binder jetting in a single build.

Littau wouldn’t disclose specific details about the materials used in its printed ceramic electrolyte, saying only that electrolyte technology and fabrication “is kind of the crown jewels of everyone who’s working in the solid state battery space.”

 

RELATED
NASA revives plans to build huge solar power plants in space

 

Sakuu also didn’t provide performance data comparing its 3Ah battery to a LiON cell. However, the company said it has improved its solid state battery’s energy capacity by a factor of 100 over the last year, and the volumetric energy efficiency has increased over 12 times.

The startup, based in San Jose, California, expects to advance from a prototype printer system to its first automated printer later this year, and they say that should increase the company’s ability to print cells “by an order of magnitude or more,” Littau said.

As Sakuu scales up, another 3D printing firm says it achieved important milestones with its own solid state battery design. Blackstone Technology, the German subsidiary of Swiss firm Blackstone Resourcesannounced in April that it successfully printed and tested its first working solid state battery cell – a photo of the tiny battery pouch showed it powering an LED light strip. The company is developing automated 3D printing for liquid-electrolyte batteries, as well.

 

RELATED
David Attenborough backs new technology that can recycle all plastics

 

Battery scientists, meanwhile, are working to improve the solid-state chemistry itself.

Although the solid-state lithium-metal design has long been considered the grand prize for batteries, owing to its high capacity and energy density, the technology also has poor stability — an issue that’s plagued the battery’s path to commercialization for decades, said Xin Li, associate professor of materials science at Harvard’s John A. Paulson School of Engineering and Applied Science (SEAS).

The problem is that lithium-metal filaments — called “dendrites” — grow on the anode with every battery cycle. Eventually, the needle-like dendrites can penetrate through the electrolyte to the cathode. If that happens, the battery is more likely to short out and potentially catch fire.

 

RELATED
Bacteria manage to recycle plastic into vanilla flavouring in weird world first

 

“The safety concern is a big concern for electric vehicle batteries; you sit on top of the battery,” said Li.

Recently, Li and his Harvard colleagues developed a unique approach to suppress dendrite growth. The idea is to layer different materials of varying stabilities between the anode and cathode — like tomatoes and lettuce within a sandwich — to control and contain the pesky filaments. Researchers said their laboratory prototype can be charged and discharged at least 10,000 times at a high current density without degrading much.

Li said that, if stability issues are solved  then solid state batteries have huge opportunity to expand in the electric vehicle battery market. However, when it comes to 3D printed batteries in particular, he said he wasn’t so sure of their potential yet.

 

RELATED
Robot swarms help scientists 3D print the buildings of the future

 

“In general, 3D printing is too slow,” he said, adding that the process may be better suited for making tiny batteries, like the ones in computer motherboards and watches.

For its part, Sakku has said its 3D printing process is designed with electric vehicles in mind, and the startup is backed by Japanese automotive parts maker Musashi Seimitsu. Still, Littau said EVs are far from the only potential market. Its printing platform could make everything from two-wheeled scooter batteries to sensors for Internet of Thing (IoT) devices and medical equipment.

“Printing actually unlocks some interesting possibilities,” he said.

About author

Matthew Griffin

Matthew Griffin, described as “The Adviser behind the Advisers” and a “Young Kurzweil,” is the founder and CEO of the World Futures Forum and the 311 Institute, a global Futures and Deep Futures consultancy working between the dates of 2020 to 2070, and is an award winning futurist, and author of “Codex of the Future” series. Regularly featured in the global media, including AP, BBC, Bloomberg, CNBC, Discovery, RT, Viacom, and WIRED, Matthew’s ability to identify, track, and explain the impacts of hundreds of revolutionary emerging technologies on global culture, industry and society, is unparalleled. Recognised for the past six years as one of the world’s foremost futurists, innovation and strategy experts Matthew is an international speaker who helps governments, investors, multi-nationals and regulators around the world envision, build and lead an inclusive, sustainable future. A rare talent Matthew’s recent work includes mentoring Lunar XPrize teams, re-envisioning global education and training with the G20, and helping the world’s largest organisations envision and ideate the future of their products and services, industries, and countries. Matthew's clients include three Prime Ministers and several governments, including the G7, Accenture, Aon, Bain & Co, BCG, Credit Suisse, Dell EMC, Dentons, Deloitte, E&Y, GEMS, Huawei, JPMorgan Chase, KPMG, Lego, McKinsey, PWC, Qualcomm, SAP, Samsung, Sopra Steria, T-Mobile, and many more.

Your email address will not be published. Required fields are marked *