As our ability to engineer materials at the nano level improves we can create new materials with amazing properties.


Love the Exponential Future? Join our XPotential Community, future proof yourself with courses from XPotential Universityconnect, watch a keynote, or browse my blog.

If you’ve ever fancied a bullet proof shirt like you sometimes see in the movies then this newest technology breakthrough could very well be for you, eventually anyway, after engineers at Caltech, MIT, and ETH Zürich developed a nano-architected material that’s made from tiny carbon struts and that’s thinner than a human hair, and which is pound for pound, more effective at stopping a projectile than steel and Kevlar – two materials commonly used in personal protective gear.


Online grocer Ocado invests £17m to bring robot run vertical farms to the world


Pioneered by Caltech materials scientist Julia R. Greer, nano-architected materials have a structure that is designed at a nanometer scale and exhibit unusual, often surprising properties – for example, exceptionally lightweight nanoceramics that spring back to their original shape, like a sponge, after being compressed.


Tiny but mighty. Source: MIT


“The knowledge from this work could provide design principles for ultra-lightweight impact resistant materials for use in efficient armoured materials, protective coatings, and blast-resistant shields [that are] desirable in defense and space applications,” says Greer whose lab led the material’s fabrication. Greer is co-corresponding author of a paper on the new material that was published in Nature Materials on July 24.


Stanford researchers built a particle accelerator on a computer chip


The material, which is thinner than a human hair, consists of interconnected tetrakaidecahedrons made out of carbon struts that have been formed under extreme heat, known as pyrolytic carbon.

Tetrakaidecahedrons are structures with 14 faces: six with four sides and eight with eight sides. They are also called “Kelvin cells” because in 1887 Lord Kelvin suggested that they would be the best shape to fill an empty three-dimensional space with equal-sized objects using minimal surface area.

“Historically this geometry appears in energy-mitigating foams, says Carlos Portela, assistant professor of mechanical engineering at MIT and lead author of the Nature Materials paper. Portela and his lab investigated the use of the foam-like structures to lend flexibility to the stiff carbon.


Dubai's first Martian Colony will be on Earth, in Dubai


“While carbon is normally brittle, the arrangement and small sizes of the struts in the nano-architected material gives rise to a rubbery, bending-dominated architecture,” he says.

While the strength of nano-architected materials has been studied using slow deformation Portela wanted to know how such a material might survive a high-speed impact so he first fabricated the material out of photosensitive polymer using two-photon lithography, a technique that uses a fast high-powered laser to solidify and sculpt microscopic structures.

His team then pyrolized the structures; that is, they burnt them in a furnace at a very high temperature to convert the polymer to pyrolytic carbon. The scientists created two versions of the material: a denser and a looser one. Portela’s lab then blasted both versions with 14-micron-diameter spherical silicon oxide particles, one at a time. The particles travelled at between 40 and 1,100 meters per second or four times faster than the speed of sound.


Researchers create a kill switch to terminate rogue AI agents


The researchers found that the denser version of the material was more resilient to supersonic impacts, with the microparticles tending to embed in the material rather than tearing straight through, as would be the case with either fully dense polymers or carbon sheets of the same thickness.

Under closer examination, they discovered that individual struts directly surrounding the particle would crumple, but the overall structure remained intact until the projectile stopped – therefore pound for pound the new material outperformed steel by more than 100 percent and Kevlar composites by more than 70 percent.

“We show the material can absorb a lot of energy because of this shock compaction mechanism of struts at the nanoscale versus something that’s fully dense and monolithic, not nano-architected,” Portela says.


The US Marines want to build a fully autonomous F-35


For the material to be used in real-world applications, researchers next will need to find ways to scale up its production and to explore how other nano-architected materials, including those made out of materials other than carbon, hold up under high-speed impacts. In the meantime, the study has demonstrated the viability of nano-architected materials for impact resistance, opening up a new avenue of research.

The Nature Materials paper is titled “Supersonic Impact Resilience of Nanoarchitected Carbon.”

About author

Matthew Griffin

Matthew Griffin, described as “The Adviser behind the Advisers” and a “Young Kurzweil,” is the founder and CEO of the World Futures Forum and the 311 Institute, a global Futures and Deep Futures consultancy working between the dates of 2020 to 2070, and is an award winning futurist, and author of “Codex of the Future” series. Regularly featured in the global media, including AP, BBC, Bloomberg, CNBC, Discovery, RT, Viacom, and WIRED, Matthew’s ability to identify, track, and explain the impacts of hundreds of revolutionary emerging technologies on global culture, industry and society, is unparalleled. Recognised for the past six years as one of the world’s foremost futurists, innovation and strategy experts Matthew is an international speaker who helps governments, investors, multi-nationals and regulators around the world envision, build and lead an inclusive, sustainable future. A rare talent Matthew’s recent work includes mentoring Lunar XPrize teams, re-envisioning global education and training with the G20, and helping the world’s largest organisations envision and ideate the future of their products and services, industries, and countries. Matthew's clients include three Prime Ministers and several governments, including the G7, Accenture, Aon, Bain & Co, BCG, Credit Suisse, Dell EMC, Dentons, Deloitte, E&Y, GEMS, Huawei, JPMorgan Chase, KPMG, Lego, McKinsey, PWC, Qualcomm, SAP, Samsung, Sopra Steria, T-Mobile, and many more.

Your email address will not be published. Required fields are marked *