Scroll Top

Worlds first oblique detention engine could unlock Mach 17 aircraft

Futurist_DETONATION_ENGINES

WHY THIS MATTERS IN BRIEF

In the future everything is fast, really really fast …

 

Love the Exponential Future? Join our XPotential Community, future proof yourself with courses from XPotential Universityconnect, watch a keynote, or browse my blog.

The future seems full of planes, trains, and even submarines, that can travel at supersonic or hypersonic speeds. But, even the fastest of those vehicles tops out at around Mach 5. Maybe 7 or 10 if we really push it. Now though that number is about to get pushed even higher after researchers at the University of Central Florida (UCF) announced they’ve trapped a sustained explosive detonation, fixed in place, for the first time ever, channelling its enormous power into thrust in a new oblique wave detonation engine that could propel an aircraft up to 17 times the speed of sound, potentially beating the now infamous hypersonic sabre engine and even traditional scramjets as hypersonic propulsion methods.

 

RELATED
Revolutionary air breathing rocket engine gets green light for tests

 

Deflagration – the high-temperature burning of fuel with oxygen – is a relatively slow, safe and controlled way to release chemical energy and turn it into motion, that’s why this nice, peaceful form of combustion underpins so much of our transport technology. But if you want to release the maximum possible energy from a unit of fuel, you get far better bang for your buck from … well, a bang.

 

A concept aircraft based on the new technology. Courtesy: UCF

 

Detonation is fast, chaotic and frequently destructive. It doesn’t necessarily require oxygen, just a single explosive material and some kind of energetic poke big enough to break the chemical bonds holding an already-unstable molecule together. It creates exothermic shockwaves that accelerate outwards at supersonic speeds, releasing enormous amounts of energy.

 

RELATED
PayPal code reveals the company might be creating its own Stablecoin cryptocurrency

 

People have been trying to harness the raw power of detonation – the most powerful form of combustion – for more than 60 years, but putting a bridle on a bomb has proven extremely difficult. Pulse detonation engines create a series of repeated explosions in a manner similar to a pulse jet, and these have already been tested in aircraft – notably in the Scaled Composites Long-EZ “Borealis” project built by the US Air Force Research Laboratory and Innovative Scientific Solutions Incorporated back in 2008.

Rotating detonation engines, in which the shockwaves from one detonation are tuned to trigger further detonations within a ring-shaped channel, were thought of as impossible to build right up until researchers at the UCF went ahead and demonstrated a prototype last year in sustained operation. Due for testing in a rocket launch by around 2025, rotating detonation engines should be more efficient than pulse detonation engines simply because the combustion chamber doesn’t need to be cleared out between detonations.

 

RELATED
EU likely to follow Germanys lead and ban sales of combustion engines from 2030

 

Now, another team from UCF, including some of the same researchers that built the rotating detonation engine last year, says it’s managed a world-first demonstration of an elusive third type of detonation engine that could out-punch them all, theoretically opening up a pathway to aircraft flying at speeds up to 13,000 mph (21,000 km/h), or 17 times the speed of sound.

The standing wave, or Oblique Wave Detonation Engine (OWDE), aims to produce a continuous detonation that’s stable and fixed in space, making for a ruthlessly efficient and controllable propulsion system generating significantly more power and using less fuel than current technology allows.

 

RELATED
Here's how NASA plans to build on Mars and the Moon

 

The UCF team claims it has successfully stabilized a detonation wave under hypersonic flow conditions, keeping it in place rather than having it move upstream (where it could cause the fuel source to explode) or downstream (where it would lose its explosive advantage and fizzle out into a deflagration).

To do so, the team built an experimental prototype that it called the High-Enthalpy Hypersonic Reacting Facility – or HyperReact, for short. Less than a meter (3.3 ft) long, the HyperReact can loosely be described as a hollow tube, divided into three sections, each with a precisely shaped interior.

The first section is a 350-mm (13.8-in) mixing chamber – a square-section channel with 45-mm (1.8-in) sides. Here, a pre-burner ignites a jet of hydrogen fuel, pre-mixed with air. Four more air channels around the pre-burner jet accelerate the flow to the appropriate speeds.

 

RELATED
US Marines 3D printed new barracks using the world's largest 3D printer

 

The second section is a converging-diverging (CD) nozzle, with an axisymmetric square cross-section all the way down. The main fuel injector adds 99.99 percent ultra-high-purity hydrogen fuel to the hot, fast, high-pressure air coming down the tube just before it enters the CD nozzle, which rapidly tapers down to a 9-mm-high (0.35-in) throat before diverging back out to a 45-mm square again. This shape is designed to accelerate the mix up to Mach 5.0 before heading into the final “test section,” where the detonation takes place.

The test section takes in that hypersonic air/fuel mix and runs it up a ramp with a 30-degree angle on the bottom side of the square tube. Tuning the flow speed and air/fuel mix, the team was able to find parameters that manipulated the pressure wave interactions in the chamber to produce the unthinkable: a stable, continuous explosion that stayed almost still, fluctuating slightly in a cyclical pattern, over the front lip of the ramp.

 

RELATED
GE resurrects the turbo prop to cut aircraft fuel consumption by 20 percent

 

Compared to conditions measured with the main fuel injector turned off, peak pressure was 2.7 times higher behind the ramp, and the nozzle exit pressure was 10.5 times higher. The flow velocity was calculated at 99.7 percent of the theoretical detonation wave speed for a freely propagating, normal explosion in the given mixture.

“This is the first time a detonation has been shown to be stabilized experimentally,” says Kareem Ahmed, an associate professor in UCF’s Department of Mechanical and Aerospace Engineering, and one of the authors on the new research paper. “We are finally able to hold the detonation in space in oblique detonation form. It’s almost like freezing an intense explosion in physical space.”

Where a detonation typically lasts only a matter of micro- or milliseconds, the UCF team managed to sustain this one experimentally until the fuel was turned off after around three seconds. That’s long enough to prove the device works, Ahmed told LiveScience, and if the team kept the fuel flowing any longer it would’ve destroyed the quartz windows on the sides of the test section, which were there to allow optical imaging of the tests. Replacing the test section with something entirely metal-sided would allow the detonation to be sustained much longer.

 

RELATED
MIT's latest breakthrough? Getting AIs to explain their decisions

 

According to Ahmed, the prototype design is reasonably close to what a full-scale production OWDE would look like. The challenge now will be learning how to dynamically alter the fuel mix, flow speed and ramp angle to keep a detonation stable, reliable and controllable over a wide range of operating conditions and control inputs.

The OWDE has been spoken of theoretically for some time, as a potentially superior form of hypersonic propulsion to the scramjet. Scramjets tend to lose efficiency as airspeed rises, potentially topping out around Mach 14. The experimental results released by UCF point toward a “Sodramjet,” a Standing Oblique Detonation Ramjet, aircraft capable of flying between Mach 6 and Mach 17.

What does it all mean? Well, hypersonic air travel at speeds up to Mach 17 won’t just open the door to potential sub-30 minute flights between New York and Los Angeles. It’ll also enable spaceplanes to efficiently fly themselves right up into orbit without strapping themselves to rocket boosters first. And there could of course be some significant implications for national security and the global nuclear balance of power.

The paper is open-access at PNAS.

Source: University of Central Florida

Related Posts

Comments (6)

[…] – World first: Oblique wave detonation engine may unlock Mach 17 aircraftFanatical Futurist – Worlds first oblique detention engine could unlock Mach 17 aircraftUT – How Fast is Mach […]

[…] – World first: Oblique wave detonation engine may unlock Mach 17 aircraftFanatical Futurist – Worlds first oblique detention engine could unlock Mach 17 aircraftUT – How Fast is Mach […]

[…] World first: Oblique wave detonation engine may unlock Mach 17 aircraftFanatical Futurist – Worlds first oblique detention engine could unlock Mach 17 aircraftUT – How Fast is Mach […]

[…] – World first: Oblique wave detonation engine may unlock Mach 17 aircraftFanatical Futurist – Worlds first oblique detention engine could unlock Mach 17 aircraftUT – How Fast is Mach […]

[…] – World first: Oblique wave detonation engine may unlock Mach 17 aircraftFanatical Futurist – Worlds first oblique detention engine could unlock Mach 17 aircraftUT – How Fast is Mach […]

[…] motor de detonación de onda oblicua puede desbloquear aviones Mach 17Futurista fanático – El primer motor de detención oblicua del mundo podría desbloquear aviones Mach 17UT – ¿Qué tan rápido es Mach […]

Leave a comment

You have Successfully Subscribed!

Pin It on Pinterest

Share This