Scroll Top

Revolutionary rocket that eats itself for fuel gets UK government funding



The cost of buying, storing, and using rocket fuel makes up a significant percentage of the cost of launching rockets, this could change the economics of the whole industry making space access even cheaper.


Interested in the Exponential Future? Join our XPotential Community, future proof yourself with courses from our XPotential Academyconnect, watch a keynote, or browse my blog.

Most rockets burn fuel in order to get into orbit, and in the future some rockets might get flung into orbit. Now though, after two years of development, researchers have developed a new type of rocket that eats itself, literally, after a self-eating rocket engine which aims to put small payloads into orbit by burning its own structure as propellant, won financial support from the UK Government.

The Defence and Security Accelerator (DASA), which is part of the UK Ministry of Defence, pledged over £100,000 to further development of the so called  Autophage Engine, which is being built at the University of Glasgow. The development team hope that this new rocket could create launch opportunities at the spaceports emerging across the northern regions of the UK.


SpaceX teases a photo of the Falcon Heavy, the world's most powerful rocket


A few autophage engines have already been test-fired by the Glasgow team using all-solid propellant, and the new funding will underwrite the research required to use a more energetic hybrid propellant – a solid tube of fuel containing a liquid oxidiser. The engine will be test-fired at Kingston University in London’s new rocket laboratory in London next year.

“We’re thrilled to have DASA in support of the autophage programme. The new propellants will take us closer to viability, because they contain enough energy to reach orbit in a smaller launch vehicle,” said Dr Patrick Harkness, of the James Watt School of Engineering, “The specific payloads we are targeting include the small satellites for which Glasgow is becoming increasingly well-known. At the moment it often takes a long time to launch these, because they need to be grouped for a flight on a larger rocket, and that large rocket is often launched from sites in the USA or Kazakhstan. It can take years.


World first as scientists use tractor beams to make objects dance


“It would be much better to use a smaller rocket, matched to our smaller payloads, and to launch from the UK. However, that’s difficult because scaling down a rocket reduces the mass of the propellant more than it reduces the mass of all the other components, including the tanks that hold the propellant itself. That’s why rockets today are fundamentally the same size they were in the 1950s.

“The autophage concept is simple: burn the tanks as well. That saves the excess mass, and it means that we can miniaturise the vehicle without hitting this wall. The body of a hybrid autophage rocket will be a tube of solid fuel, containing a liquid oxidiser. The entire assembly will be consumed, from the bottom up, by an engine which will vaporise the fuel tube, add the oxidiser, and burn the mixture to create thrust. The engine will have consumed the entire body of the rocket by the time the assembly reaches orbit, and only the payload will be left. It is a much more mass-efficient process.”


SpaceX unveils their new high tech space suit for Mars colonists


The technical development of the engine is being conducted by Krzysztof Bzdyk, who recently joined the University of Glasgow from NASA.

“The engine has to run hot enough to vaporise the fuel tube, but at the same time not destroy itself in service. We will use the cold fuel tube coming into the engine as means of controlling temperature, in a process called regenerative cooling. But even so, the test article will have to be made of exotic materials, like tungsten and graphite, at least until we fully understand the temperatures inside,” added Bzdyk.

“We’re delighted to be collaborating with DASA and the University of Glasgow to carry out the test firing of this engine at our new rocket lab at the University’s Roehampton Vale campus,” said Dr Peter Shaw, at Kingston University.


Futurist keynote, London: The Future of Artificial Intelligence, British Museum


“As the UK’s space industry continues to grow and thrive, our investment in these facilities will provide a platform to support the next generation of emerging talent and allow us to partner with other institutions to help the country achieve its space ambitions.”

“Demand for these types of launches could reach as many as 3,000 a year by the middle of this decade – a potential global market value of 100m pounds. Smaller rockets like this, which could be launched from sites here in Britain, could be the key to unlocking that market. The UK has a strategic aim to secure 10% of the worldwide space industry by 2030, and we believe that our autophage engine is uniquely well-placed to help deliver on that ambition. We’re looking forward to continuing our work to develop the engine and help the UK find its place in space,” said Dr Harkness.

Source: University of Glasgow

Related Posts

Leave a comment


1000's of articles about the exponential future, 1000's of pages of insights, 1000's of videos, and 100's of exponential technologies: Get The Email from 311, your no-nonsense briefing on all the biggest stories in exponential technology and science.

You have Successfully Subscribed!

Pin It on Pinterest

Share This