0

WHY THIS MATTERS IN BRIEF

We now have an easy way to detect bombs and nuclear weapons, in a convenient hand held device …

 

Love the Exponential Future? Join our XPotential Community, future proof yourself with courses from XPotential Universityconnect, watch a keynote, or browse my blog.

After the successful test of the WATCHMAN Project, that lets the US and its allies keep an eye on the progress of the Iranian nuclear program from the other side of the world, Homeland Security might soon have a new tool to add to its arsenal after researchers at Northwestern University and Argonne National Laboratory developed a new material that opens doors for a new class of neutron detectors that can be used to detect everything from nuclear material to bombs from miles away in real time – especially when packed into a drone. Or, as could be the case with this new material, eventually a smartphone.

 

RELATED
Swiss scientists are growing glaciers to turn back the effects of global warming

 

With the ability to sense smuggled nuclear materials and bombs highly efficient neutron detectors are critical for national security. Currently, there are two classes of detectors which either use helium gas or flashes of light, but these detectors are very large – sometimes the size of a wall.

Northwestern and Argonne’s material introduces a third class – a semiconductor that can absorb neutrons and generate electrical signals that can be easily measured. The semiconductor-based detector is also highly efficient and stable. It can be used both in small, portable devices for field inspections and very large detectors that use arrays of crystals.

The study will be published in the April issue of the journal Nature.

 

RELATED
Researchers smash fusion record to generate 700 times more power than the entire US grid

 

“People have imagined semiconductor neutron detectors for a long time,” said Northwestern’s Mercouri Kanatzidis, who led the research. “The idea was there, but no one had the right material to do it.”

Kanatzidis is the Professor of Chemistry in Northwestern’s Weinberg College of Arts and Sciences. He has a joint appointment with Argonne.

When heavy elements, such as Uranium and Plutonium, decay, their atoms eject neutrons from their nuclei. Most neutron detectors are so-called scintillators that work by sensing ejected neutrons and then emitting light to alert the user. This new material is a semiconductor and does not emit light, but instead directly detects electrical signals induced by the neutrons. In addition to security applications, neutron detectors are used in radiation safety, astronomy, plasma physics, materials science and crystallography.

 

RELATED
One in a billion enzyme that breaks down plastic found in Japanese dump

 

Whereas classic types of thermal neutron detectors have been in use since the 1950s, a practical semiconductor material has remained elusive. Excellent at absorbing neutrons, lithium quickly emerged as the most promising material for neutron detecting devices. But integrating lithium into a semiconductor and making it stable, lithium crumbles when it meets water, was another story.

“You can find good semiconductors, but they don’t have lithium,” Kanatzidis said. “Or you can find stable lithium compounds that are not good semiconductors. We found the best of both worlds. The specific lithium-6 isotope, which is reasonably abundant and low cost, is a strong neutron absorber.”

In their study, Kanatzidis and his team discovered the right combination of materials to make a working device that also keeps lithium stable. Their new material – Lithium-Indium-Phosphorus-Selenium (LIPS) – is layered in structure and enriched with the lithium-6 isotope.

 

RELATED
Google secretly spent $10million on a 4 year Cold Fusion experiment

 

“The crystal structure is special,” Kanatzidis said. “The lithium is inside the layers, so water cannot reach it. That’s a big, important feature of this material.”

The resulting semiconductor neutron detector can detect thermal neutrons from even a very weak source – and can do so within nanoseconds. It also can discriminate between neutrons and other types of nuclear signals, such as gamma rays which prevents false alarms.

One final added bonus: the material contains a very high amount of lithium. So a smaller fraction of the material can absorb the same amount of neutrons as a giant device. This leads to devices small enough to fit in your hand.

 

RELATED
Scientists have grown a human stomach in a petri dish

 

“It’s important to have all sizes of neutron detectors and as many kinds as possible, such as our new semiconductor,” Kanatzidis said. “You want ones that are as big as a wall, where you can pass a truck right by it. But you also want small ones that can be portable for inspections out in the field.”

About author

Matthew Griffin

Matthew Griffin, described as “The Adviser behind the Advisers” and a “Young Kurzweil,” is the founder and CEO of the World Futures Forum and the 311 Institute, a global Futures and Deep Futures consultancy working between the dates of 2020 to 2070, and is an award winning futurist, and author of “Codex of the Future” series. Regularly featured in the global media, including AP, BBC, Bloomberg, CNBC, Discovery, RT, Viacom, and WIRED, Matthew’s ability to identify, track, and explain the impacts of hundreds of revolutionary emerging technologies on global culture, industry and society, is unparalleled. Recognised for the past six years as one of the world’s foremost futurists, innovation and strategy experts Matthew is an international speaker who helps governments, investors, multi-nationals and regulators around the world envision, build and lead an inclusive, sustainable future. A rare talent Matthew’s recent work includes mentoring Lunar XPrize teams, re-envisioning global education and training with the G20, and helping the world’s largest organisations envision and ideate the future of their products and services, industries, and countries. Matthew's clients include three Prime Ministers and several governments, including the G7, Accenture, Aon, Bain & Co, BCG, Credit Suisse, Dell EMC, Dentons, Deloitte, E&Y, GEMS, Huawei, JPMorgan Chase, KPMG, Lego, McKinsey, PWC, Qualcomm, SAP, Samsung, Sopra Steria, T-Mobile, and many more.

Your email address will not be published. Required fields are marked *