0

WHY THIS MATTERS IN BRIEF

Solid state batteries are regarded as the ultimate in battery technology and Samsung have unveiled their latest product.

 

Interested in the Exponential Future? Connect, download a free E-Book, watch a keynote, or browse my blog.

Solid state batteries are the future of battery technology, which is why it’s little wonder that when a company recently unveiled one of the first high quality prototypes it was called the “Jesus  Battery.” At 50 percent smaller by volume than a typical Lithium-Ion battery, Samsung’s prototype solid state battery cells could enable 500mile electric car ranges and cycle lives over 1,000 charges in a much safer package.

 

RELATED
AI gets busy helping human scientists create the world's first spray on solar panels

 

The drive towards solid-state is one of the key fronts in the battle to break through to the next generation of batteries that will power our electric vehicles, aircraft, devices and homes in the coming decades, provided the coronavirus doesn’t send us back to using sharp rocks as tools that is.

Where current-gen Lithium-Ion batteries use liquid electrolytes, in which lithium ions float back and forth between the cathode and anode every time you charge or discharge the battery, solid-state batteries use a congealed solid that passes charges back and forth.

Eliminating the liquid electrolyte not only allows for much more dense and compact batteries with much higher capacity by volume, it also deals with heat much better. Solid state batteries will thus require less heat evacuation equipment, meaning even less weight and bulk for an electric car to carry around, and a longer lifespan. They also don’t explode or catch fire, which is a rare but deal-breaking issue with current technology.

 

RELATED
Two self driving Ubers ran red lights in San Francisco

 

One of the key problems thus far has been dendrite formation. Yes, that old chestnut. Lithium-metal anodes such as those typically used tend to start building up little deposits of metal over many cycles, which can form stalagmite-like protrusions that eventually push through to the point where they can begin to short out the battery and reduce its life. There are naturally also safety implications.

Researchers at the Samsung Advanced Institute of Technology (SAIT) and the Samsung R&D Institute Japan (SRJ) say they’ve successfully sidestepped this problem by replacing the lithium metal anode with a 5-micrometer-thick silver-carbon composite layer. Using a solid sulfide electrolyte and a high-nickel layered oxide cathode, the team found this new design “effectively regulate[d] lithium deposition, which leads to a genuinely long electrochemical cyclability.”

 

RELATED
Researchers unveil self-charging fabrics that could power tomorrow's Smart Clothes

 

Prototype pouch cells were tested at more than 900 Wh per liter, about double the density of typical liquid electrolyte cells, with a Coulombic efficiency over 99.8 percent – that is, the cells discharge 99.8 percent of the energy they’re charged with. Cycle life is estimated to be over 1,000 cycles, which might sound like it’s not a lot, but the team say this design would allow for 500 mile (800km) battery packs, and thus a thousand charge cycles could represent as much as 500,000 miles (800,000 km) of driving if managed carefully – more than you’d expect from most engines.

Samsung is one of the world’s best-established battery manufacturers, and is certainly in a good position to start rolling next-gen batteries out in bulk if it believes they nail the brief. For now, the team says it plans to continue refining the designs, as well as the manufacturing technologies that need to be put in place to get them moving in bulk.

 

RELATED
Renewable energy sources power up Scotland and Costa Rica

 

Price will, of course, be a huge factor in the success of any coming battery technology, as battery prices still account for a large percentage of the price of an EV. And this study says nothing of power density, which will affect both the performance of the cars involved and their ability to charge quickly. Mind you, the fact that they should deal with heat so well would lead us to believe that high charge rates might be possible without damaging or deteriorating the battery.

The research was published in Nature Energy.

Source: Samsung

About author

Matthew Griffin

Matthew Griffin, described as “The Adviser behind the Advisers” and a “Young Kurzweil,” is the founder and CEO of the World Futures Forum and the 311 Institute, a global Futures and Deep Futures consultancy working between the dates of 2020 to 2070, and is an award winning futurist, and author of “Codex of the Future” series. Regularly featured in the global media, including AP, BBC, Bloomberg, CNBC, Discovery, RT, Viacom, and WIRED, Matthew’s ability to identify, track, and explain the impacts of hundreds of revolutionary emerging technologies on global culture, industry and society, is unparalleled. Recognised for the past six years as one of the world’s foremost futurists, innovation and strategy experts Matthew is an international speaker who helps governments, investors, multi-nationals and regulators around the world envision, build and lead an inclusive, sustainable future. A rare talent Matthew’s recent work includes mentoring Lunar XPrize teams, re-envisioning global education and training with the G20, and helping the world’s largest organisations envision and ideate the future of their products and services, industries, and countries. Matthew's clients include three Prime Ministers and several governments, including the G7, Accenture, Aon, Bain & Co, BCG, Credit Suisse, Dell EMC, Dentons, Deloitte, E&Y, GEMS, Huawei, JPMorgan Chase, KPMG, Lego, McKinsey, PWC, Qualcomm, SAP, Samsung, Sopra Steria, T-Mobile, and many more.

Your email address will not be published. Required fields are marked *