6G is about 8 to 10 years away, but companies are already positioning themselves to be the leaders in the space.


Love the Exponential Future? Join our XPotential Community, future proof yourself with courses from XPotential Universityconnect, watch a keynote, or browse my blog.

5G is has just started rolling out around the world but companies everywhere are already focusing their attention on what comes next, and now, unsurprisingly,  Samsung who recently worked with me to create their vision of the far future, in the year 2069 their Centennial, has climbed aboard the 6G train, setting out its vision for next-generation mobile and predicting it could debut as early as 2028.


Brain reading gadgets get closer after researchers pack a BMI interface into a pair of glasses


Samsung isn’t the first to share its 6G views, but its thinking is interesting because of its broad role in the tech ecosystem, ranging from chips and displays to devices and networks. Samsung expects ITU-R will begin work on 6G next year and, noting the increasingly short development cycle for each new generation, forecasts initial commercial rollouts in 2028 and possible mass commercialization in 2030.

It expects 6G will support a connection density ten times greater than that of 5G. To do that will require a peak rate of 1,000 Gbit/s and a user-experienced rate of 1 Gbit/s, compared with the 5G peak rate of 20 Gbit/s. The network will also need to deliver end-to-end latency below 1ms and to be twice as spectrally efficient and twice as energy efficient as 5G.


Scientists unveil a brand new smart contact lens that tracks health and detects disease


The paper says it is “inevitable” that next-gen mobile will utilize the terahertz (THz) bands, for example, from 100GHz to 10THz. As with mmWave for 5G today, these high frequencies are largely virgin territory that will enable massive wideband channels, up to tens of gigahertz in breadth, Samsung says.

But it acknowledges the difficulties of working at such high frequencies, with severe path loss, challenges in designing and building all parts of the network, and almost certainly requiring new antenna arrays and waveforms.


Tokenised gold surpasses $1 Billion in market cap for the first time


The paper canvasses some likely 6G applications, such as “high-fidelity mobile hologram,” like the one they just unveiled, requiring data transmission rates hundreds of times greater than 5G, and “truly immersive” apps that combine Augmented, Mixed, and Virtual Reality.

These future applications will require extensive computation capabilities. But those heavy processing and throughput demands will mean real-time offload at a level well beyond today’s MEC offload, requiring hyper-fast data rates and extremely low latencies, aided by AI.


Experts believe AI will be used to hijack brain machine interfaces, form consortium


Samsung says that, in addition to the traditional fixed base stations, the network must be capable of adding moving base stations “as well as non-terrestrial components, for example airplanes, Urban Air Mobility (UAM) systems, low earth orbit (LEO) and geo-stationary orbit (GEO) satellites, and high altitude platform stations (HAPS).”

To handle this would require an automated network that can add and configure the new connection nodes in a mesh configuration when needed – for example, providing connectivity for people using public transport.


UK Government mulls creating the world's first Robo-Regulator for fintechs


Samsung also expects dynamic spectrum sharing to maximize use of under utilised spectrum, especially in low-frequency ranges.

“6G should be designed to achieve true communications and computing convergence so that devices can seamlessly utilize the computing power available in the network,” Samsung said. The network would also need AI embedded in all 6G system components, ensuring each can acquire and evaluate a massive amount of real-time information, the company says.

Source: Samsung

About author

Matthew Griffin

Matthew Griffin, described as “The Adviser behind the Advisers” and a “Young Kurzweil,” is the founder and CEO of the World Futures Forum and the 311 Institute, a global Futures and Deep Futures consultancy working between the dates of 2020 to 2070, and is an award winning futurist, and author of “Codex of the Future” series. Regularly featured in the global media, including AP, BBC, Bloomberg, CNBC, Discovery, RT, Viacom, and WIRED, Matthew’s ability to identify, track, and explain the impacts of hundreds of revolutionary emerging technologies on global culture, industry and society, is unparalleled. Recognised for the past six years as one of the world’s foremost futurists, innovation and strategy experts Matthew is an international speaker who helps governments, investors, multi-nationals and regulators around the world envision, build and lead an inclusive, sustainable future. A rare talent Matthew’s recent work includes mentoring Lunar XPrize teams, re-envisioning global education and training with the G20, and helping the world’s largest organisations envision and ideate the future of their products and services, industries, and countries. Matthew's clients include three Prime Ministers and several governments, including the G7, Accenture, Aon, Bain & Co, BCG, Credit Suisse, Dell EMC, Dentons, Deloitte, E&Y, GEMS, Huawei, JPMorgan Chase, KPMG, Lego, McKinsey, PWC, Qualcomm, SAP, Samsung, Sopra Steria, T-Mobile, and many more.

Your email address will not be published. Required fields are marked *