Scroll Top

Scientists find a way to supercharge lasers by a million fold

WHY THIS MATTERS IN BRIEF

What if you could increase the power of a laser by a million fold by just tweaking some materials?

 

Love the Exponential Future? Join our XPotential Community, future proof yourself with courses from XPotential University, read about exponential tech and trendsconnect, watch a keynote, or browse my blog.

Scientists from the UK and South Korea have discovered a way to create laser pulses 1,000 times stronger than currently possible. Using computer simulations, they have discovered that a new way of compressing the light can drastically increase its intensity to such an extent that it can extract particles from a vacuum. This new technique could open up doors for important discoveries into the very nature of matter.

 

RELATED
Lunar dust could be melted to make roads and launchpads on the Moon

 

Researchers from the University of Strathclyde, Ulsan National Institute of Science & Technology (UNIST), and Gwangju Institute of Science and Technology (GIST) have proposed a simple idea to revolutionize the next generation of lasers. They suggest using the gradient in the density of plasma, which is fully ionized matter, to cause photons to bunch together. This is similar to the way a group of cars bunches up as they encounter a steep hill. If this technique is successful, it could increase the power of lasers by more than one million times from what is currently achievable.

The most powerful lasers in the world have a peak power of approximately ten petawatts. A new 20 petawatt laser called the “Vulcan 20-20” is currently under construction at STFC Rutherford Appleton Laboratory. To put this into perspective, the Earth’s upper atmosphere receives 173 petawatts (173 x 10^15 W) of sunshine, about one-third of which reaches Earth’s surface. A petawatt is equivalent to 10^15 watts, an exawatt is equivalent to 10^18 watts, and a zettawatt is equivalent to 10^21 watts. The sun produces 4 x 10^26 watts of power, equal to 400,000 zettawatts.

 

RELATED
LLNL's high powered laser closes in on nuclear fusion

 

“An important and fundamental question is what happens when light intensities exceed levels that are common on earth. High-power lasers allow scientists to answer basic questions on the nature of matter and the vacuum and explore what is known as the intensity frontier,” explained Professor Dino Jaroszynski of the University of Strathclyde’s Department of Physics.

“Applying terawatt to petawatt lasers to matter has enabled the development of next-generation laser-plasma accelerators, which are thousands of times smaller than conventional accelerators. Providing new tools for scientists is transforming the way science is done. We have set up the Scottish Centre for the Application of Plasma-based Accelerator (SCAPA) at the University of Strathclyde to push applications based on high-power lasers forward,” he added.

 

RELATED
Israeli researchers newest hack uses fans to steal classified data from top secret servers

 

The new laser amplifying technique will help physicists explore some fundamental aspects of interest, from the so-called “intensity frontier” to being able to extract particles from a vacuum. The research has applications in astrophysics by simulating stellar phenomena and addressing energy issues through laser fusion research. It could also prove helpful in pushing our understanding of the Schwinger limit. This is a theoretical point where light can be converted into matter, with immense theoretical and practical implications.

Professor Min Sip Hur of UNIST added that “the results of this research are expected to be applicable in various fields, including advanced theoretical physics and astrophysics. It can also be used in laser fusion research to help address the energy issues facing humanity. Our combined Korean and UK teams plan to experimentally test the ideas in the lab.”

 

RELATED
Next generation virtual influencers will be indistinguishable from humans

 

“Plasma can perform a role similar to traditional diffraction gratings in CPA systems but is a material that cannot be damaged. It will, therefore, enhance traditional CPA technology by including a very simple add-on.” He added, “Even with plasma of a few centimeters in size, it can be used for lasers with peak powers exceeding an exawatt,” said Professor Hyyong Suk of GIST.

“Understanding the nature of matter and vacuum at intensities above 1024 W/cm2 are among the outstanding challenges of modern physics. High-power lasers also enable the study of the astrophysical phenomena in the laboratory, providing unique glimpses into the interior of stars and the [universe’s origin],” explains Strathclyde University.

You can view the study for yourself in the journal Nature Photonics.

Related Posts

Leave a comment

You have Successfully Subscribed!

Pin It on Pinterest

Share This