Today AI models are hard to create, but what if there was a tool that could let anyone create one? That’s the purpose of Andrew Ng’s latest venture.


Love the Exponential Future? Join our XPotential Community, future proof yourself with courses from XPotential University, read about exponential tech and trendsconnect, watch a keynote, or browse my blog.

Andrew Ng’s cloud-based platform for computer vision, Landing AI, is taking on the challenge of democratising the development of Artificial Intelligence (AI) for small and medium sized businesses with its latest offering, LandingLens. The solution promises to accelerate the development and testing of computer vision AI projects without the need for intricate programming skills or prior AI experience.


Nascar quadraplegic Sam Schmidt reaches 100mph in this tricked out Stingray


“We started by exploring the manufacturing sector, one of the hardest industries in which to deploy computer vision. Then we found the tools we had built for manufacturing, with relatively few modifications, can also be useful for many other computer vision applications,” said Ng, noted AI academic, and founder and CEO of Landing AI.

The company announced today that its flagship computer vision product, LandingLens, is now available for a free trial, coupled with a new pricing scheme that enables pay-as-you-go usage beyond the initial trial period.


See how it works


“With the new platform, we aim to expand our tool’s use cases across several other industries,” Ng told reporters. “To me, it’s about achieving our goal of democratizing the creation of AI.”

According to Ng, the platform’s data-centric AI system focuses on data instead of code, and as various industries increasingly embrace AI solutions, a fundamental shift is necessary to unlock the complete potential of this technology.


The future of Media and Entertainment


LandingLens prioritizes enhancing data quality for AI models, thereby enabling its functionality, even in cases where companies have limited data available for training the AI models, a common challenge encountered by most firms. The “data-centric” strategy involves training AI models to function proficiently with modest amounts of quality data rather than relying solely on the vast datasets that typically underpin AI applications in large-scale internet companies.

“Over the last few years, we did much work with customers that often had small datasets. During these experiences, we discovered multiple technology steps and optimizations that now enable our algorithm to work well on smaller datasets,” said Ng.

He explained that the model was trained on a ResNet dataset for image recognition, and in the backend, LandingLens’s pretrained algorithm utilizes AI-based automatic hyperparameter tuning, enabling it to work well with datasets of every size. When data is passed through the model, it’s optimized through numerous steps to deliver well-analyzed, high-quality output and detailed insights.

Recently, therapeutic antibody discovery firm OmniAb used LandingLens to successfully automate its visual inspection process, significantly increasing efficiency and throughput. In addition, the platform aided OmniAb in increasing AI access within its organization for use cases that involve people who are not high-level scientists.


Facebook embraces holographics to create its first VR glasses prototype


To maintain data consistency within LandingLens, the platform uses an advanced labelling technology that automatically detects and corrects mislabelled images, enhancing overall data quality.

This collaborative labelling approach allows multiple users to label images and facilitates the process of reaching a consensus through data cloud and edge device deployment capabilities. As a result, deploying and testing your model can be achieved with just a few clicks of the mouse. Users can select the deployment option that best suits their requirements, ranging from a windows application to a programmatic API.

Additionally, LandingLens employs a continuous-learning mechanism that ensures that the created model remains up to date by integrating new data from the deployment environment to retrain the model.

“We want to make the model development workflow easy for users. The traditional approach to developing AI models has always been labelling, training to deployment. We want to ease this development workflow by having users not write much code, but focus more on data entry,” added Ng.


Samsung's impressive AI turns video into digitally rendered VR worlds


Ng said the company would continue to focus on developing the LandingLens platform as a single tool that serves multiple computer vision applications.

“Use cases in computer vision are currently keeping us very busy. Many customers across industries are requesting us to add more features for cases such as streamlining heterogeneous data. So our current roadmap involves a lot more work to do in computer vision,” said Ng.

Through the LandingLens platform, Ng aims to solve issues found today with customization or longtail AI model development, which he sees as the most significant barrier to widespread AI adoption.

“The only way for organizations to unlock maximum value from their AI projects is when they have the liberty to customize their AI system as they need. They can do this by engineering the data rather than the code. This way, companies can adjust to the shifting market requirements and develop better models using lesser human resources,” explained Ng. “So, I’m excited about facilitating the goal of further democratizing access to AI creation.”

The company is pursuing applications in automotive, electronics and medical device manufacturing sectors. Ng said embracing a data-centric AI methodology and implementing AI and deep learning-based solutions for computer vision scenarios will benefit this diverse range of industries.

About author

Matthew Griffin

Matthew Griffin, described as “The Adviser behind the Advisers” and a “Young Kurzweil,” is the founder and CEO of the World Futures Forum and the 311 Institute, a global Futures and Deep Futures consultancy working between the dates of 2020 to 2070, and is an award winning futurist, and author of “Codex of the Future” series. Regularly featured in the global media, including AP, BBC, Bloomberg, CNBC, Discovery, RT, Viacom, and WIRED, Matthew’s ability to identify, track, and explain the impacts of hundreds of revolutionary emerging technologies on global culture, industry and society, is unparalleled. Recognised for the past six years as one of the world’s foremost futurists, innovation and strategy experts Matthew is an international speaker who helps governments, investors, multi-nationals and regulators around the world envision, build and lead an inclusive, sustainable future. A rare talent Matthew’s recent work includes mentoring Lunar XPrize teams, re-envisioning global education and training with the G20, and helping the world’s largest organisations envision and ideate the future of their products and services, industries, and countries. Matthew's clients include three Prime Ministers and several governments, including the G7, Accenture, Aon, Bain & Co, BCG, Credit Suisse, Dell EMC, Dentons, Deloitte, E&Y, GEMS, Huawei, JPMorgan Chase, KPMG, Lego, McKinsey, PWC, Qualcomm, SAP, Samsung, Sopra Steria, T-Mobile, and many more.

Your email address will not be published. Required fields are marked *