0

WHY THIS MATTERS IN BRIEF

Nuclear fusion is the ultimate green energy – according to some – and it’s slowly edging closer to reality.

 

Love the Exponential Future? Join our XPotential Community, future proof yourself with courses from XPotential Universityconnect, watch a keynote, or browse my blog.

The field of nuclear fusion has seen some exciting advances of late, with scientists creating the first self-healing nuclear fusion reactors and truck sized fusion reactor concepts, as well as demonstrating how the massive energy and fuels necessary to kick start the fusion process can be heated to the extreme temperatures needed for the necessary reactions to take place.

 

RELATED
Walk in. Shop. Walk out. Amazon unveils its new cashless cashierless store

 

All around the world scientists are hard at work trying to create the world’s first commercial reactor where the energy generated through those reactions is enough to keep the sequence going, something known as fusion ignition, and something that could fulfil fusion’s promise of unlimited, clean energy. And now “Extraordinary results” from experiments with an extraordinarily high-powered laser have just taken us a whole lot closer to realising that goal.

 

Learn more about the Future of Energy, Keynote by Matthew Griffin

 

Inside a 10 story building the size of three football fields at Lawrence Livermore National Laboratory’s National Ignition Facility in California is an array of 192 lasers, which can combine to deliver 1.9 megajoules of ultraviolet leaser energy onto a tiny chamber in the center. These pulses take place in a billionth of a second, but concentrated onto something the size of BB projectile, they can create tremendous temperatures and pressures that might just kickstart the future fusion energy revolution.

 

RELATED
Devastating bioweapon or humanity's saviour? UN green lights the 'Gene Drive'

 

Like all nuclear fusion experiments, the idea is to recreate the reactions that take place constantly within our Sun, where extreme temperature and pressure combine to force the fusion of separate atoms into helium, which releases momentous amounts of energy as a result. The approach being pursued at the National Ignition Facility is known as inertial confinement fusion, and since coming online in 2009, we’ve seen its scientists take some important steps forward.

This began with hitting a target with a one-megajoule laser and demonstrating control over the scattering beams in 2010, and then delivering a record setting 500-trillion-watt laser shot in 2012. A big breakthrough came in 2014, when the NIF team demonstrated a one-off “fuel gain,” where the lasers were focused onto a tiny plastic capsule filled with deuterium and tritium, creating a reaction that gave off more energy than what was put in.

 

RELATED
Scientists turn nuclear waste into diamond batteries that last forever

 

This was an important milestone in the pursuit of ignition, where the fusion reactions would create a plasma hot enough to trigger a runaway effect in which reactions take place over and over in a self-sustaining cycle. As reported by Science magazine, the NIF team have since proceeded to experiments yielding 100 kJ, and one even as high as 170 kJ, edging ever so closer to their goal.

The scientists are now claiming a massive leap forward, with experiments conducted in early August achieving a yield of more than 1.3 megajoules. The work is yet to be peer-reviewed, a process that will help them work through the technical reasons behind this huge success, but the initial analysis points to an eight-fold improvement on their most recent round of experiments, and one that moves them much closer to the goal of fusion ignition.

 

RELATED
A Danish startup builds a fleet of floating nuclear reactors to power the world

 

At this stage, the team points to design improvements in the casing that holds the fuel capsule, better precision of the laser and tweaks that drive up the energy coupled with the reactions, as the reasons for the gains. Plans for the next experiments are already in the pipeline, and are expected to take place in the coming months.

Source: Lawrence Livermore National Laboratory

About author

Matthew Griffin

Matthew Griffin, described as “The Adviser behind the Advisers” and a “Young Kurzweil,” is the founder and CEO of the World Futures Forum and the 311 Institute, a global Futures and Deep Futures consultancy working between the dates of 2020 to 2070, and is an award winning futurist, and author of “Codex of the Future” series. Regularly featured in the global media, including AP, BBC, Bloomberg, CNBC, Discovery, RT, Viacom, and WIRED, Matthew’s ability to identify, track, and explain the impacts of hundreds of revolutionary emerging technologies on global culture, industry and society, is unparalleled. Recognised for the past six years as one of the world’s foremost futurists, innovation and strategy experts Matthew is an international speaker who helps governments, investors, multi-nationals and regulators around the world envision, build and lead an inclusive, sustainable future. A rare talent Matthew’s recent work includes mentoring Lunar XPrize teams, re-envisioning global education and training with the G20, and helping the world’s largest organisations envision and ideate the future of their products and services, industries, and countries. Matthew's clients include three Prime Ministers and several governments, including the G7, Accenture, Aon, Bain & Co, BCG, Credit Suisse, Dell EMC, Dentons, Deloitte, E&Y, GEMS, Huawei, JPMorgan Chase, KPMG, Lego, McKinsey, PWC, Qualcomm, SAP, Samsung, Sopra Steria, T-Mobile, and many more.

Your email address will not be published. Required fields are marked *