Molecular computing could help usher in the era of biological, chemical, liquid, and other kinds of futuristic computers that are already emerging and working in the labs …


Love the Exponential Future? Join our XPotential Community, subscribe to the podcast, future proof yourself with courses from XPotential University, read about exponential tech and trendsconnect, watch a keynote, or browse my blog.

I’m assuming that your computer uses a good amount of energy, that is if it isn’t a DNA based computer or a super powerful neuromorphic computer – both of which run on almost no energy at all but both of which could soon be the most powerful computing platforms of all time, by a wide wide margin.


Scientists are teaching robots to share code and evolve just like animals


Now, to join that club, researchers in the US have made progress on developing another kind of computer, a biocomputer, that has a lot in common with future biological computers, chemical computers, liquid computers, and a technology that the US defence establishment call a Molecular Computer or a Molecular Information System (MIS), that uses molecules to solve problems and which uses 10,000 times less energy than a conventional computer.

If made larger these computers could not only efficiently solve complex problems that normally require a lot of time and energy, but they could also shrink a datacenter the size of a Google hyperscale datacenter into a computing package no bigger than your office desk.

For most of computing history, as chips have decreased in size they have also required less energy to run. But this relationship broke around 15 years ago, meaning that computers that perform large computations aren’t as energy efficient as we might have once hoped.


IBM unveils the world's first "commercial quantum computer," but is it?


One way to make future computers use less energy may be to ditch electronics altogether and turn to biology instead. Till Korten at Dresden University of Technology in Germany and his colleagues built a chip based molecular computer that uses molecules travelling through channels to solve problems instead of electrons.

The chip is made of glass and etched in such a way that it encodes a problem for the computer to solve. To perform the computation, the researchers flood the chip with a fluid containing molecules called kinesins and microscopic tubes called microtubules.

Microtubules form part of the inner scaffolding of cells, and kinesins move along them to transport other molecules. The biocomputer design turns this upside down. The microtubules effectively “crowd-surf” on kinesins through the chip’s channels, says Korten. All the microtubules move at once, meaning many calculations can be performed simultaneously.


IBM unveils a new 5nm chip process, but 1nm looms on the horizon


The microtubules move through the channels and each path one takes corresponds to the computer trying out a solution. The researchers then take an image to read the biocomputer’s output and determine the most successful solution.

Korten says the biocomputer can solve intensive combinatorial problems, similar to the calculations used to figure out the optimal route for an airplane that has to make stops in multiple cities.

His team’s machine solved one such problem that required 128 times more computations than what had previously been considered the state of the art for biocomputers that use the same computational mechanism.

Henry Hess at Columbia University in New York says that this is significant progress compared with the first biocomputers made a decade ago.


This new self-healing semiconductor can withstand the radiation of a hundred Suns


A traditional computer would solve this particular problem more quickly, but for combinatorial problems with more variables, electronic computers would eventually need billions of years. While how to speed them up is an open question, for the new biocomputer, researchers would simply add more molecules to make solving the problem in days more feasible, says Dan Nicolau at McGill University in Canada. Here, it is advantageous that microtubules are so small that trillions fit in a gram of fluid.

Surfing molecules also perform each step of computation for 10,000 times less energy than electrons in a traditional computer.

“One way to understand it is that these [molecular] motors have been optimised by a billion years of evolution,” says Korten. They are involved in fundamental processes in living cells so they evolved to be as efficient as possible, he says.


Revolutionary AI chip that replaces GPU's hailed as the "future" by ARM's founder


The new device is the most powerful of its kind yet, but it still isn’t advanced enough to be practical. Korten says that for realistic applications, such as in logistics, the team’s computer needs more molecules, which is a manufacturing challenge and leads to more errors caused by microtubules taking wrong turns through the channels.

“We are at the state that electronic computers were in when people just started putting together the first transistors,” he added.

Journal reference: ACS Nanoscience Au, DOI: 10.1021/acsnanoscienceau.2c00013

About author

Matthew Griffin

Matthew Griffin, described as “The Adviser behind the Advisers” and a “Young Kurzweil,” is the founder and CEO of the World Futures Forum and the 311 Institute, a global Futures and Deep Futures consultancy working between the dates of 2020 to 2070, and is an award winning futurist, and author of “Codex of the Future” series. Regularly featured in the global media, including AP, BBC, Bloomberg, CNBC, Discovery, RT, Viacom, and WIRED, Matthew’s ability to identify, track, and explain the impacts of hundreds of revolutionary emerging technologies on global culture, industry and society, is unparalleled. Recognised for the past six years as one of the world’s foremost futurists, innovation and strategy experts Matthew is an international speaker who helps governments, investors, multi-nationals and regulators around the world envision, build and lead an inclusive, sustainable future. A rare talent Matthew’s recent work includes mentoring Lunar XPrize teams, re-envisioning global education and training with the G20, and helping the world’s largest organisations envision and ideate the future of their products and services, industries, and countries. Matthew's clients include three Prime Ministers and several governments, including the G7, Accenture, Aon, Bain & Co, BCG, Credit Suisse, Dell EMC, Dentons, Deloitte, E&Y, GEMS, Huawei, JPMorgan Chase, KPMG, Lego, McKinsey, PWC, Qualcomm, SAP, Samsung, Sopra Steria, T-Mobile, and many more.

Your email address will not be published. Required fields are marked *