Scroll Top

Scientists use light to create a new state of physical matter

futurist_light_matter

WHY THIS MATTERS IN BRIEF

The ability to combine light and physical matter to create a new type of hybrid matter opens the door to creating new materials and products with extraordinary capabilities.

 

Interested in the future and want to experience even more?! eXplore More.

Recently scientists have turned light into a liquid that acts like water, and into sound, and also bought it to a standstill, and now they have combined it with other particles to create a new form of matter, and that has huge implications for everything from the future of communications and computing, to one day helping us create the fabled sci-fi light sabres from Star Wars!

 

RELATED
World first as researchers 3D print capacitors straight into PCB's

 

Every type of atom in the universe has a unique fingerprint – it only absorbs or emits light at the particular energies that match the allowed orbits of its electrons. And that fingerprint enables scientists to identify an atom wherever it is found anywhere in the universe. For example, a hydrogen atom in outer space absorbs light at the same energies as one on Earth.

While physicists have learned how electric and magnetic fields can manipulate this fingerprint, the number of features that make it up usually remains constant. But in work published recently in the journal Nature, University of Chicago researchers challenged this paradigm by shaking electrons with lasers to create “doppelganger” features that had new energy levels – and while that might sound dull it’s a breakthrough that lets scientists create hybrid particles which are, get this… part-atom and part-light, and as a result it will let scientists create a whole range of new artificial atoms that have a wide variety of new behaviours.

 

RELATED
Modern Meadow gets ready to bring 3D printed meat and leather to New York

 

The research is part of a greater effort in Assoc. Prof. Jonathan Simon’s lab to break down the walls between matter and light, in order to investigate their fundamental properties. In addition to learning about how materials behave at the quantum level, this work could one day help create more powerful computers or virtually “unhackable” quantum communications, that ironically in something the researchers didn’t spot, were hacked by Chinese scientists recently.

One step along the way to making matter out of light, and don’t let that phrase be lost on you – “make matter out of light” – is to make individual packets of light, called photons, interact with each other like matter does – normally photons zip along at the speed of light and don’t react to each other at all which is what the scientists have managed to change.

 

RELATED
Molecular barcodes help suppliers keep track of Cannabis shipments

 

“In order to make photons collide with one another, we use atoms as a go-between,” said postdoctoral researcher Logan Clark, who led the research. “But we were running into a problem because the photons only interact with atoms whose electronic orbitals are at very particular energies. So we asked what if we could make copies of the orbitals at whatever energies we wanted?”

Clark had already developed techniques to manipulate quantum matter by shaking it – called Floquet engineering – as part of his Ph.D. project. The right sort of shaking naturally produces copies of quantum states at multiple energies along the way.

 

RELATED
DNA printers get ready to move from printing sentences to paragraphs

 

“We had always viewed the copies as a side effect rather than the goal,” he said, “but this time, we shook our electrons with the specific intent of making the copies.”

By varying the intensity of a laser field tuned precisely to an atomic resonance, the team was able to shift the orbitals of an electron. Shaking the orbitals by periodically varying this intensity produced the desired copies.

But these doppelgangers come with an important catch.

 

RELATED
World first as Otto's self driving truck delivers much needed beer in Colorado

 

“While the atomic orbital does appear at multiple distinct energies, it is important to note that these copies are actually bound to the original like puppets,” explained postdoctoral researcher Nathan Schine, a co-author on the study. “When any of the copies shifts, the original and all of the other copies shift with it.”

By allowing photons to interact with these shaken atoms, the team has created what they call “Floquet polaritons” – quasi-particles which are part-light and part-atom, and unlike regular photons, interact with each other quite strongly. These interactions are essential for making matter from light. Making polaritons with shaken atoms can give the polaritons much more flexibility to move around and collide with each other in new ways.

 

RELATED
Samsung gets closer to launching its first foldable smartphone

 

“Floquet polaritons are full of surprises, and we’re still continuing to understand them better,” Clark said. “Our next order of business, though, will be to use these colliding photons to make topological ‘fluids’ of light. It is a tremendously exciting time.”

Having copies of an atomic state at multiple energies also offers exciting possibilities for optical frequency conversion – a key tool in creating secure quantum communication methods.

“It turns out shaking things is not only a lot of fun, but can lead to some really fascinating science,” Clark said.

Source: UOC

Related Posts

Leave a comment

EXPLORE MORE!

1000's of articles about the exponential future, 1000's of pages of insights, 1000's of videos, and 100's of exponential technologies: Get The Email from 311, your no-nonsense briefing on all the biggest stories in exponential technology and science.

You have Successfully Subscribed!

Pin It on Pinterest

Share This