The ability to combine light and physical matter to create a new type of hybrid matter opens the door to creating new materials and products with extraordinary capabilities.


Interested in the future and want to experience even more?! eXplore More.

Recently scientists have turned light into a liquid that acts like water, and into sound, and also bought it to a standstill, and now they have combined it with other particles to create a new form of matter, and that has huge implications for everything from the future of communications and computing, to one day helping us create the fabled sci-fi light sabres from Star Wars!


Microsoft created elusive particles to build the world's most accurate quantum computer


Every type of atom in the universe has a unique fingerprint – it only absorbs or emits light at the particular energies that match the allowed orbits of its electrons. And that fingerprint enables scientists to identify an atom wherever it is found anywhere in the universe. For example, a hydrogen atom in outer space absorbs light at the same energies as one on Earth.

While physicists have learned how electric and magnetic fields can manipulate this fingerprint, the number of features that make it up usually remains constant. But in work published recently in the journal Nature, University of Chicago researchers challenged this paradigm by shaking electrons with lasers to create “doppelganger” features that had new energy levels – and while that might sound dull it’s a breakthrough that lets scientists create hybrid particles which are, get this… part-atom and part-light, and as a result it will let scientists create a whole range of new artificial atoms that have a wide variety of new behaviours.


Move to Earn Solana app is crypto's latest gaming craze


The research is part of a greater effort in Assoc. Prof. Jonathan Simon’s lab to break down the walls between matter and light, in order to investigate their fundamental properties. In addition to learning about how materials behave at the quantum level, this work could one day help create more powerful computers or virtually “unhackable” quantum communications, that ironically in something the researchers didn’t spot, were hacked by Chinese scientists recently.

One step along the way to making matter out of light, and don’t let that phrase be lost on you – “make matter out of light” – is to make individual packets of light, called photons, interact with each other like matter does – normally photons zip along at the speed of light and don’t react to each other at all which is what the scientists have managed to change.


This tech-style startup is replacing cotton with clothes made from algae


“In order to make photons collide with one another, we use atoms as a go-between,” said postdoctoral researcher Logan Clark, who led the research. “But we were running into a problem because the photons only interact with atoms whose electronic orbitals are at very particular energies. So we asked what if we could make copies of the orbitals at whatever energies we wanted?”

Clark had already developed techniques to manipulate quantum matter by shaking it – called Floquet engineering – as part of his Ph.D. project. The right sort of shaking naturally produces copies of quantum states at multiple energies along the way.


New battery breakthrough could charge devices in seconds


“We had always viewed the copies as a side effect rather than the goal,” he said, “but this time, we shook our electrons with the specific intent of making the copies.”

By varying the intensity of a laser field tuned precisely to an atomic resonance, the team was able to shift the orbitals of an electron. Shaking the orbitals by periodically varying this intensity produced the desired copies.

But these doppelgangers come with an important catch.


NASA partners with ICON to 3D print its future Moonbase


“While the atomic orbital does appear at multiple distinct energies, it is important to note that these copies are actually bound to the original like puppets,” explained postdoctoral researcher Nathan Schine, a co-author on the study. “When any of the copies shifts, the original and all of the other copies shift with it.”

By allowing photons to interact with these shaken atoms, the team has created what they call “Floquet polaritons” – quasi-particles which are part-light and part-atom, and unlike regular photons, interact with each other quite strongly. These interactions are essential for making matter from light. Making polaritons with shaken atoms can give the polaritons much more flexibility to move around and collide with each other in new ways.


Google AIs learnt how to encrypt their communications to stop people spying on them


“Floquet polaritons are full of surprises, and we’re still continuing to understand them better,” Clark said. “Our next order of business, though, will be to use these colliding photons to make topological ‘fluids’ of light. It is a tremendously exciting time.”

Having copies of an atomic state at multiple energies also offers exciting possibilities for optical frequency conversion – a key tool in creating secure quantum communication methods.

“It turns out shaking things is not only a lot of fun, but can lead to some really fascinating science,” Clark said.

Source: UOC

About author

Matthew Griffin

Matthew Griffin, described as “The Adviser behind the Advisers” and a “Young Kurzweil,” is the founder and CEO of the World Futures Forum and the 311 Institute, a global Futures and Deep Futures consultancy working between the dates of 2020 to 2070, and is an award winning futurist, and author of “Codex of the Future” series. Regularly featured in the global media, including AP, BBC, Bloomberg, CNBC, Discovery, RT, Viacom, and WIRED, Matthew’s ability to identify, track, and explain the impacts of hundreds of revolutionary emerging technologies on global culture, industry and society, is unparalleled. Recognised for the past six years as one of the world’s foremost futurists, innovation and strategy experts Matthew is an international speaker who helps governments, investors, multi-nationals and regulators around the world envision, build and lead an inclusive, sustainable future. A rare talent Matthew’s recent work includes mentoring Lunar XPrize teams, re-envisioning global education and training with the G20, and helping the world’s largest organisations envision and ideate the future of their products and services, industries, and countries. Matthew's clients include three Prime Ministers and several governments, including the G7, Accenture, Aon, Bain & Co, BCG, Credit Suisse, Dell EMC, Dentons, Deloitte, E&Y, GEMS, Huawei, JPMorgan Chase, KPMG, Lego, McKinsey, PWC, Qualcomm, SAP, Samsung, Sopra Steria, T-Mobile, and many more.

Your email address will not be published. Required fields are marked *