Scroll Top

New self-healing material rebuilds itself using carbon from the air

futurist_self-healing-carbon-air

WHY THIS MATTERS IN BRIEF

In the future it will be taken for granted that materials can self-heal, and they’ll be able to do it in a multitude of ways.

 

Interested in the future and want to experience even more?! eXplore More.

In a world first researchers at MIT in the US have announced the creation of a new “living” self-healing material that can react with carbon dioxide from the air, to grow, strengthen, and even repair itself. The polymer, which might someday be used as construction or repair material, or for protective coatings, continuously converts the infamous  greenhouse gas into a carbon-based material that it uses to reinforce itself.

The current version of the new material is a synthetic gel-like substance that performs a chemical process similar to the way plants incorporate carbon dioxide from the air into their growing tissues, and the researchers say that in the early days the material might, for example, be made into lightweight panels that could be shipped to a construction site where they would harden and solidify just from exposure to air and sunlight, thereby saving on the energy and cost of transportation.

 

RELATED
Urban mining trend helps find new ways to recycle solar panels

 

The teams work is described in a paper in the journal Advanced Materials, by Professor Michael Strano, and eight others from MIT and at the University of California.

“This is a completely new concept in materials science,” says Strano, the Carbon C. Dubbs Professor of Chemical Engineering. “What we call carbon-fixing materials don’t exist yet today” outside of the biological realm, he says, describing materials that can transform carbon dioxide in the ambient air into a solid, stable form, using only the power of sunlight, just as plants do.

Developing a synthetic material that not only avoids the use of fossil fuels for its creation, but actually consumes carbon dioxide from the air, has obvious benefits for the environment and climate, the researchers point out.

“Imagine a synthetic material that could grow like trees, taking the carbon from the carbon dioxide and incorporating it into the material’s backbone,” Strano says.

The material the team used in these initial proof-of-concept experiments did make use of one biological component though – chloroplasts, the light-harnessing components within plant cells, which the researchers obtained from spinach leaves. The chloroplasts weren’t alive but could still catalyze the reaction of carbon dioxide to glucose. Isolated chloroplasts are quite unstable, meaning that they tend to stop functioning after a few hours when removed from the plant, and in their paper, Strano and his co-workers demonstrate methods to significantly increase the catalytic lifetime of extracted chloroplasts. In ongoing and future work, the chloroplasts, the team say, will be replaced by catalysts that are nonbiological in origin.

 

RELATED
Synthetic molecules that mimic human cells successfully lured and killed the flu virus

 

The material the researchers used, a gel matrix composed of a polymer made from aminopropyl methacrylamide (APMA) and glucose, an enzyme called glucose oxidase, and the chloroplasts, becomes stronger as it incorporates the carbon from the air. The new material isn’t yet strong enough though to be used as a building material, but in the short term it might function as a crack filling or coating material, the researchers say.

The team has also worked out methods to produce materials of this type by the ton, and is now focusing on optimizing the material’s properties. Commercial applications such as self-healing coatings and crack filling are realizable in the near term, they say, whereas additional advances in backbone chemistry and materials science are needed before construction materials and composites can be developed.

One key advantage of such materials is they would be self-repairing upon exposure to sunlight or some indoor lighting, Strano says. If the surface is scratched or cracked, the affected area grows to fill in the gaps and repair the damage, without requiring any external action.

While there has been widespread effort to develop self-healing materials that could mimic this ability of biological organisms, the researchers say, these have all required an active outside input to function. Heating, UV light, mechanical stress, or chemical treatment were needed to activate the process. By contrast, these materials need nothing but ambient light, and they incorporate mass from carbon in the atmosphere, which is ubiquitous.

 

RELATED
Revolutionary polymorphic liquid metal paves the way for shape shifting robots

 

The material starts out as a liquid, Kwak says, adding, “it is exciting to watch it as it starts to grow and cluster” into a solid form.

“Materials science has never produced anything like this,” Strano says. “These materials mimic some aspects of something living, even though it’s not reproducing.” Because the finding opens up a wide array of possible follow-up research, the US Department of Energy is sponsoring a new program directed by Strano to develop it further.

“Our work shows that carbon dioxide need not be purely a burden and a cost,” Strano says. “It is also an opportunity in this respect. There’s carbon everywhere. We build the world with carbon. Humans are made of carbon. Making a material that can access the abundant carbon all around us is a significant opportunity for materials science. In this way, our work is about making materials that are not just carbon neutral, but carbon negative.”

Source: MIT

Related Posts

Leave a comment

You have Successfully Subscribed!

Pin It on Pinterest

Share This