17 views
0

WHY THIS MATTERS IN BRIEF

Air gapped systems normally hold highly sensitive and secret data, and the number of ways to exfiltrate data from them, once compromised, is growing.

 

Hot on the heels of exploits that use fan noise, infra red cameras, heat, LED lights and drones, magnetic fields and smartphones, and a multitude of other hacks to gain access to sensitive air gapped computer systems, the researchers from Israel’s Ben Gurion University have shown once again that air-gapped networks are not safe from a determined and patient attacker.

 

RELATED
Watch your mouth, Google's DeepMind lip reads better than humans

 

The researchers have already devised several devious techniques to extract data from isolated or air-gapped computers that store highly sensitive data and now their latest technique, dubbed PowerHammer, exploits current fluctuations flowing through the power lines supplying electricity to air-gapped computers.

The researchers have been able to exfiltrate data at a rate of 1,000 bits per second for lines connected to the target computer and 10 bits per second from the grid.

As with the Magneto and Odini magnetic field Faraday cage attacks that the researchers also revealed recently, the PowerHammer technique would use malware to regulate a CPU’s utilization to control the system’s power consumption.

Instead of observing magnetic emissions as CPU usage rises and falls, the attacker can observe changes in current flow from the electricity lines outside a building or via the cords supplying power to the infected machine.

 

RELATED
Daimler hires Soul Machine's lifelike Avatar to answer customer queries

 

“The data is modulated, encoded, and transmitted on top of the current flow fluctuations, and then it is conducted and propagated through the power lines. This phenomena is known as a ‘conducted emission’,” writes Mordechai Guri, lead author of the PowerHammer paper.

“We show that a malicious code can influence the momentary power consumption of the computer, generating data-modulated conduction on the power lines in the low frequency band. The generated noise travels along the input power lines and can be measured by an attacker probing the power cables.”

PowerHammer assumes an attacker has already infected an air-gapped network and focuses on the task of extracting protected data after infection.

Guri notes that power-line communication is common for smart home and industrial applications. All they’re doing is applying the same techniques for malicious covert communications using “parasitic signals” generated by malware.

 

RELATED
Boeing teams up with America's biggest ship builder to build autonomous subs

 

Anyone worried about a PowerHammer attack has a range of countermeasure options, such as monitoring the currency flow on power lines for deviations from standard transmission patterns. Other options include power-line filters and signal jammers.

Guri notes that traditional intrusion-detection systems would probably suffer from a high rate of false alarms and may be bypassed by malware.

About author

Matthew Griffin

Matthew Griffin, award winning Futurist and Founder of the 311 Institute is described as "The Adviser behind the Advisers." Recognised for the past five years as one of the world's foremost futurists, innovation and strategy experts Matthew is an author, entrepreneur international speaker who helps investors, multi-nationals, regulators and sovereign governments around the world envision, build and lead the future. Today, asides from being a member of Centrica's prestigious Technology and Innovation Committee and mentoring XPrize teams, Matthew's accomplishments, among others, include playing the lead role in helping the world's largest smartphone manufacturers ideate the next five generations of mobile devices, and what comes beyond, and helping the world's largest high tech semiconductor manufacturers envision the next twenty years of intelligent machines. Matthew's clients include Accenture, Bain & Co, Bank of America, Blackrock, Bloomberg, Booz Allen Hamilton, Boston Consulting Group, Dell EMC, Dentons, Deloitte, Deutsche Bank, Du Pont, E&Y, Fidelity, Goldman Sachs, HPE, Huawei, JP Morgan Chase, KPMG, Lloyds Banking Group, McKinsey & Co, Monsanto, PWC, Qualcomm, Rolls Royce, SAP, Samsung, Schroeder's, Sequoia Capital, Sopra Steria, UBS, the UK's HM Treasury, the USAF and many others.

Your email address will not be published. Required fields are marked *