195 views
0

WHY THIS MATTERS IN BRIEF

The knock on impact of being able to produce cheap carbon fiber at scale could help us create stronger, lighter  drones, prosthetics and robots, as well as improve the fuel economy of all manner of vehicles, from aircraft to cars.

 

Carbon fiber is the superman of materials. Five times stronger than steel and a fraction of the weight it’s used in everything from aircraft and bikes, to racing cars, rackets, and wind turbines. But there’s a catch, a big one. It’s made from oil and other costly ingredients so it’s incredibly expensive to produce, which is why it only shows up in high end gear.

 

RELATED
Estonia becomes the world's first virtual nation capable of rebooting itself

 

However, thanks to a team from the National Renewable Energy Laboratory (NREL) led by Gregg Beckham, that could all soon change and we might soon see the day when all Carbon fiber is made from plants instead of petroleum, which will drive down its cost and, undoubtedly help push it more into the main stream.

Carbon fiber is made from a chemical called Acrylonitrile and today producers make Acrylonitrile from oil, Ammonia, Oxygen and an expensive catalyst, the process also produces a lot of excess heat and yields a toxic by product. And, because Acrylonitrile is made from petroleum, the cost of Carbon fiber inevitably rises and falls in line with the oil prices, something else that isn’t good if you want to use it for mainstream products.

“Acrylonitrile prices have witnessed large fluctuations in the past, which has in turn led to lower adoption rates for carbon fibers for making cars and planes lighter weight,” said Beckham, “if you can stabilise the Acrylonitrile price by providing a new feedstock from which to make Acrylonitrile we can make carbon fiber cheaper.”

 

RELATED
Microsoft created elusive particles to build the world's most accurate quantum computer

 

Beckham and his team developed their new process for producing Acrylonitrile using the parts of plants people don’t eat, such as corn stalks and wheat straw. They broke these materials down into sugars, which were converted into an acid and combined with an inexpensive catalyst to produce Acrlyonitrile, and, furthermore, as an added bonus, the process generated no excess heat and returned no toxic by products.

The team believe their new plant based process can be scaled up economically and they’re now working with several firms to produce large quantities that they can turn into Carbon fiber and tested for use in the construction of cars where the materials light weight and tremendous strength could make cars, whether it’s today’s combustion powered cars, or tomorrow’s electric vehicles, even more economical to drive and reduce their impact on the environment.

There’s also a trend underway by scientists around the world to make petroleum products from plants instead, which when you think about it makes sense – after all, oil is made from prehistoric plants that were buried and subjected to intense heat and pressure for millions of years, and now scientists are trying to cut out the middlemen.

 

RELATED
Coursera's AI tells your boss what skills you lack and how to get them

 

“We’ll be doing more fundamental research in this area,” said Beckham, “beyond scaling Acrylonitrile production, we are also excited about using this powerful, robust chemistry to make other everyday materials.”

About author

Matthew Griffin

Matthew Griffin, award winning Futurist working between the dates of 2020 and 2070, is described as “The Adviser behind the Advisers” and a “Young Kurzweil.” Regularly featured in the global press, including BBC, CNBC, Discovery and RT, Matthew’s ability to identify, track, and explain the impacts of hundreds of revolutionary emerging technologies on global culture, industry and society, is unparalleled. Recognised for the past six years as one of the world’s foremost futurists, innovation and strategy experts Matthew is an international speaker who helps governments, investors, multi-nationals and regulators around the world envision, build and lead an inclusive, sustainable future. A rare talent Matthew sits on several boards and his recent work includes mentoring Lunar XPrize teams, building the first generation of biological computers and re-envisioning global education with the G20, and helping the world’s largest manufacturers ideate the next 20 years of intelligent devices and machines. Matthew's clients include three Prime Ministers and several governments, including the G7, Accenture, Bain & Co, BCG, BOA, Blackrock, Bentley, Credit Suisse, Dell EMC, Dentons, Deloitte, Du Pont, E&Y, HPE, Huawei, JPMorgan Chase, KPMG, McKinsey, PWC, Qualcomm, SAP, Samsung, Sopra Steria, UBS, and many more.

Your email address will not be published. Required fields are marked *