342 views
0

WHY THIS MATTERS IN BRIEF

A chemical computer, one that doesn’t use electrical signals to communicate, means that we now, potentially, have a way to send computer instructions around the human body that won’t interfere with our nervous system.

 

You probably take it for granted that the devices that enable our modern day life communicate with each other by using electricity. Either by wire or by electromagentic waves, it always comes back to an electrical signal flickering on and off and on again. But a new research project out of Stanford University is experimenting with using chemicals, as opposed to electricity, to send data from one machine to the next. They’ve even managed to send a text message.

 

RELATED
Researchers create human VR avatars with three arms to improve productivity

 

Instead of sending ones and zeros by turning a current off and on, this system sends pulses of acid (Vinegar) and bass (Glass cleaner). The message, in binary chemical bits, travels through plastic tubes to the destination computer which tracks changes in pH levels to decipher the message.

“Every problem that we’ve addressed in traditional wireless communications over the last three or four decades is really different now because we’ve created a completely different mode of communicating,” said Andrea Goldsmith, Stanford professor of electrical engineering, “as so, it opens up all of these new ways of thinking about the optimal way to design this type of communication system.”

The possible applications for a stable, non-electronic messaging system are myriad. It could operate as a backup or alternate source of communication in case of a blackout and it’s already intrinsically hardened to withstand Electromagnetic Pulses – something which, against the backdrop of today’s growing nuclear proliferation is of increasing concern to the US Government – as well as places where sending electric signals are difficult, like underwater.

 

 

For the next step, Goldsmith and her fellow researchers are looking at human-based nanotechnology. Traditional communication is a problem for in-body nanotech because electronic signals don’t behave well inside the body and could cause potential organ damage. A messaging system not reliant on electricity could forego these problems altogether opening up a multitude of new opportunities for companies, and devices who, for whatever reason need to send computer messages around the human body. Whether it’s to enable communication with and between, for example, nanobots, neuroprosthetics or other implanted medical devices.

“It’s just so ‘out there,’ like science fiction,” Goldsmith says, “what are all the exciting ways that we could use this to enable communication that is impossible today? That’s what I would want someone to walk away thinking about.”

About author

Matthew Griffin

Matthew Griffin, award winning Futurist and Founder of the 311 Institute, a global futures think tank, is described as "The Adviser behind the Advisers." Regularly featured on AP, CNBC, Discovery and RT, his ability to identify and track hundreds of game changing emerging technologies, and explain their impact on global culture, industry and society, is unparalleled. Recognised for the past five years running as one of the world's foremost futurists, innovation and strategy experts Matthew is an international speaker who helps governments investors, multi-nationals and regulators around the world envision, build and lead an inclusive future. A rare talent Matthew sits on the Technology and Innovation Committee (TIAC) for Centrica, one of Europe’s largest energy companies, and his recent work includes mentoring XPRIZE teams, building the first generation of biocomputers, helping the world’s largest manufacturers companies envision the next five generations of smartphones and devices, and what comes next, and helping companies including Qualcomm envision the next twenty years of semiconductors. Matthew's clients are the who’s who of industry and include Accenture, Bain & Co, BOA, Blackrock, Bloomberg, Booz Allen Hamilton, BCG, Bentley, Dell EMC, Dentons, Deloitte, Deutsche Bank, Du Pont, E&Y, Fidelity, Goldman Sachs, HPE, Huawei, JPMorgan Chase, KPMG, Lloyds Banking Group, McKinsey, Monsanto, PWC, Qualcomm, Rolls Royce, SAP, Samsung, Schroeder's, Sequoia Capital, Sopra Steria, UBS, the UK's HM Treasury, the USAF and many others.

Comments

Your email address will not be published. Required fields are marked *