Scroll Top

Clone’s robotic hand gets deep into uncanny valley

Futurist_clonehand

WHY THIS MATTERS IN BRIEF

By changing the robots muscles to hydraulics and making some basic design mods Clone’s robots look very lifelike …

 

Love the Exponential Future? Join our XPotential Community, future proof yourself with courses from XPotential University, read about exponential tech and trendsconnect, watch a keynote, or browse my blog.

If you’ve ever watched androids in sci-fi movies like Aliens then you can’t help but notice that they all look uncannily human-like, yet despite this today most robots still look like fancy tin cans with appendages. As a result, one company, Clone Robotics is going to impressive lengths to make sure its “intelligent androids” will have some of the most human-like hands in the business, and watching the way their impressive hydraulic “muscles” move under a transparent skin is absolutely hypnotic.

 

RELATED
Brick-bot Hadrian X gets to work building homes in Australia

 

Do robots really need super-biomimetic hands? Probably not, in many applications; there are surely better task-specific designs out there for most jobs, and likewise there are surely other more generalized designs that can go far beyond the limitations of the human hand. On the other grippy claw, the urban world we live in is almost exclusively built around the bodies evolution has given us – particularly our hands. So there’s definitely an argument for designs like Clone’s.

 

See it in action

 

Whatever your opinions on this topic, it’s undeniably fascinating to watch the Clone hand moving, particularly since the team uses a transparent artificial skin that lets you see a tangle of synthetic muscles in action.

These muscles are the Clone team’s own development on the idea of a McKibbin muscle. Effectively, these are mesh tubes with balloons inside them; such things have been around for decades. As the balloon expands, usually driven by either a pneumatic or hydraulic pump external to the muscle, its radial expansion forces the mesh to contract longitudinally.

 

RELATED
Baxter the robot fixes its mistakes by reading your mind

 

Clone didn’t want to use bulky external pumps; the team wanted a muscle you could simply apply an electric current to, and get it to contract in a reasonably controlled manner. So, they came up with the idea of keeping the balloon filled with a fluid – at one point Acetaldehyde – and running a powerful heating element through it. When a current is applied, the element quickly boils the fluid – in the case of acetaldehyde, taking it from atmospheric pressure at 20 °C (68 °F) to 6.6 times that pressure at 70 °C (158 °F).

 

And again …

 

You can see a version of this muscle being tested in the video, it certainly contracts impressively quickly given how it works, but you can see the designers having to cool it with a water spray to get the thing to relax.

For a skeleton, Clone moulded a set of relatively humanlike bones, like the now famous and ridiculously dexterous Dactyl robot hand, with joints hinged to ensure a range of motion as close to the human hand as possible. The team claims some 27 degrees of freedom, the same as our own hands, with natural wrist movements and thumb rotations built in – all actuated, much like our own arms, by a complex tangle of muscles and tendons running the length of the forearm and through the hand itself.

 

RELATED
Some unions think workers could be the ones who regulate AI

 

It seems that on the current prototype, Clone has gone back to a simpler hydraulic system to drive the muscles, distributing pressure from a 500-watt, 145-psi water pump through a series of 36 electro-hydraulic valves, each with its own pressure sensor. There are also magnetic sensors to feed back information on joint angles and velocities to whatever brain is running it.

The company says it’ll be shipping hand kits to customers by late 2022, although it’s not yet nominated a price. The next product will be a full torso with a rigid spine, including 124 muscles through the neck, shoulders, arms, hands, chest and upper back. It’ll ride on a “locomotion platform” that carries its battery pack. But the focus will be on these hands, and rightly so. Check out the team’s latest video below.

Source: Clone Robotics

Related Posts

Leave a comment

You have Successfully Subscribed!

Pin It on Pinterest

Share This