Scroll Top

Researchers made the world’s smallest antenna out of DNA



One day everything will be connected – even your cells and this is the tech that could do it …!


Love the Exponential Future? Join our XPotential Community, future proof yourself with courses from XPotential University, read about exponential tech and trendsconnect, watch a keynote, or browse my blog.

If you want to connect your superyacht to a network you have a giant antenna. If you want to connect your smartphone to a 5G network then you have a small antenna. And, if you want to hook your body’s cells to a network so can record and transmit information about them using something like a super sci-fi cellular recording system then you need an even smaller antenna – a nanosized one like this one …


Nanoparticles help researchers accurately locate metastasising cancers


As antenna systems that let us connect smaller and smaller things to our networks get smaller and more powerful scientists in Canada have announced that they’ve built the tiniest antenna ever made – just five nanometers in length. Unlike its much larger counterparts we’re all familiar with, this minuscule thing isn’t made to transmit radio waves, but to glean the secrets of ever-changing proteins.

The nanoantenna is made from DNA, the molecules carrying genetic instructions that are around 20,000 times smaller than a human hair. It’s also fluorescent, which means it uses light signals to record and report back information. And those light signals can be used to study the movement and change of proteins in the human body in real time – which will come in handy as we close I on our quest to turn humans into sci-fi like biological computers


Bitcoin wallets could be hacked by quantum computers by 2025 but there's hope


Part of the innovation with this particular antenna is the way in which the receiver part of it is also used to sense the molecular surface of the protein it’s studying. That results in a distinct signal when the protein is fulfilling its biological function.

“Like a two-way radio that can both receive and transmit radio waves, the fluorescent nanoantenna receives light in one color, or wavelength, and depending on the protein movement it senses, then transmits light back in another color, which we can detect,” says chemist Alexis Vallée-Bélisle, from the Université de Montréal (UdeM) in Canada.

Specifically, the job of the antenna is to measure the structural changes in proteins over time. Proteins are large, complex molecules that carry out all kinds of essential tasks in the body, from supporting the immune system to regulating the function of organs.


Stanford just built the world's first Flash Organisation


However, as proteins rush about doing their jobs, they undergo constant changes in structure, transitioning from state to state in a highly complex process scientists call protein dynamics. And we don’t really have good tools to track these protein dynamics in action.

“Experimental study of protein transient states remains a major challenge because high-structural-resolution techniques, including Nuclear Magnetic Resonance (NMR) and X-Ray Crystallography, often cannot be directly applied to study short-lived protein states,” the team explains in their paper.

The latest DNA synthesizing technology – some 40 years in development – is able to produce bespoke nanostructures of different lengths and flexibilities, optimized to fulfil their required functions.


SpaceX will launch it's global satellite internet ambitions today


One advantage that this super-small DNA antenna has over other analysis techniques is that it’s able to capture very short-lived protein states. That, the researchers say, means there are plenty of potential applications here, in both biochemistry and nanotechnology more generally.

“For example, we were able to detect, in real time and for the first time, the function of the enzyme alkaline phosphatase with a variety of biological molecules and drugs,” says chemist Scott Harroun, from UdeM. “This enzyme has been implicated in many diseases, including various cancers and intestinal inflammation.”

While exploring “the universality” of their design, the team successfully tested their antenna with three different model proteins – Streptavidin, Alkaline Phosphatase and Protein G – but there’s potentially much more to come, and one of the advantages of the new antenna is its versatility.


Experts warn Facebook's cryptocurrency could help it become a virtual nation


“Nanoantennas can be used to monitor distinct bio-molecular communications and mechanisms in real time, including small and large conformational changes – in principle, any event that can affect the dye’s fluorescence emission,” the team writes in their paper.

DNA is becoming more and more popular as a building block that we can synthesise and manipulate to create nanostructures like the antenna in this study. DNA chemistry is relatively simple to program, and easy to use once programmed.

The researchers are now looking to create a commercial startup so that the nanoantenna technology can be practically packaged and used by others, whether that’s pharmaceutical organizations or other research teams.


Just as 5G starts rolling out 6G is in the already in the works


“Perhaps what we are most excited by is the realization that many labs around the world, equipped with a conventional spectrofluorometer, could readily employ these nanoantennas to study their favourite protein, such as to identify new drugs or to develop new nanotechnologies,” says Vallée-Bélisle.

The research has been published in Nature Methods.

Related Posts

Leave a comment


1000's of articles about the exponential future, 1000's of pages of insights, 1000's of videos, and 100's of exponential technologies: Get The Email from 311, your no-nonsense briefing on all the biggest stories in exponential technology and science.

You have Successfully Subscribed!

Pin It on Pinterest

Share This