0

WHY THIS MATTERS IN BRIEF

If you loose the sense of touch in any part of your body, for whatever reason, it can be traumatic – but solutions are emerging.

 

Love the Exponential Future? Join our XPotential Community, future proof yourself with courses from XPotential University, read about exponential tech and trendsconnect, watch a keynote, or browse my blog.

Touch is central to your ability to orient yourself in space and move skilfully and the loss of it, for example through paralysis or other neurological disorders, takes an emotional toll. This is one of the reasons why outfits like Elon Musk’s Brain Machine Interface (BMI) outfit Neuralink are focused on developing solutions that let the human brain send and receive neurological signals to other parts of the body – even when the link between the two points is broken, for example as is the case with a broken back.

 

RELATED
Google creates a neural network that picks out individual voices in video

 

Now a new complimentary study in the journal Brain Stimulation offers evidence that minimally invasive stimulation of the deep grooves (sulci) on the outer layer of the brain could be a clinically viable option to re-spark the sense of touch in millions of people worldwide with paralysis, spinal cord injury, diabetes mellitus, or neuropathic pain who have lost the ability to feel touch.

 

The Future of Health and Wellness by Futurist Keynote Matthew Griffin from FanaticalFuturist on Vimeo.

 

The study conducted by researchers at the Feinstein Institutes for Medical Research, the scientific arm of Northwell Health, is reported in the article, “Evoking highly focal percepts in the fingertips through targeted stimulation of sulcal regions of the brain for sensory restoration.”

 

RELATED
A year after china beat it the US is getting it's own hackproof quantum network

 

“From buttoning our shirts to holding a loved one’s hand, our sense of touch may be taken for granted until we lose it,” said Chad Bouton, PhD, professor at the Institute of Bioelectronic Medicine at the Feinstein Institutes and co-principal investigator of the study. “These [results] show the ability to generate that sensation, even after it is lost, which may lead us to a clinical option in the future.”

“Advances in artificial intelligence, brain electrodes, and bioelectronic medicine hold significant promise for patients after spinal cord injury or stroke,” said Kevin Tracey, MD, president and CEO of the Feinstein Institutes. “This remarkable study indicates bioelectronic medicine and neurosurgery could restore functions previously lost in these conditions.”

 

RELATED
Google's Chrome update uses AI to change privacy and the rules of the web

 

In earlier studies BMI researchers have used intracortical and cortical surface electrical stimulation to restore sensations of touch and orientation to the hand. However, instead of stimulating the deeper more difficult-to-reach grooves or sulci on the undulating surface of the brain, earlier attempts have been restricted to stimulating the ridges, or the Gyri.

Since regions farther from the midline of the body, such as fingertips, are represented in regions of the primary somatosensory cortex that extend deep into the grooves, stimulating the ridges have not been very successful in evoking touch at the fingertips and other distal regions of the body.

 

RELATED
World first as scientists get the "Extinction Gene" to work in mammals

 

To reach the deep grooves of the primary somatosensory cortex the researchers in this study used Stereoelectroencephalography (SEEG) depth electrodes. These electrodes that are used to electrically stimulate the grooves of the primary somatosensory cortex also record neural signals and can be used to investigate the brain’s response to electrical and mechanical stimulation. This process has allowed researchers to deepen the current knowledge of neural circuitry involved in processing touch-related sensations in the human brain, noted Santosh Chandrasekaran, PhD, co-lead author on the paper with colleague Stephan Bickel, MD, PhD.

Led by Ashesh Mehta, MD, neurosurgeon, associate professor in the Institute of Bioelectronic Medicine at the Feinstein Institutes, and co-principal investigator on the study, the authors stimulated the cerebral cortices of two patients with intractable epilepsy both on the ridges, via High-Density Electrocorticography (HD-ECoG) grids and in the grooves via SEEG depth electrodes to see which worked better in evoking precise sensations of touch in the hand.

 

RELATED
Major 3D printing advance boosts LiON battery capacities by over 400 percent

 

Their results showed highly focused perception of touch can be evoked at the fingertips through SEEG stimulation deep in the grooves of the primary somatosensory cortex. The participants reported feelings of “tingling” or “sensation of electricity” localised to the hand and fingertips when electrically stimulated via SEEG.

Then, using neuroimaging tools designed by the Human Connectome Project, the authors showed the precise cortical subregions of the primary somatosensory cortex that evoke focused sensations of touch.

Comparing the two participants, the authors showed touch induced by SEEG electrodes was significantly more focal and localised to the fingertips more often, than by stimulation of ridges through HD-ECoG electrodes.

About author

Matthew Griffin

Matthew Griffin, described as “The Adviser behind the Advisers” and a “Young Kurzweil,” is the founder and CEO of the World Futures Forum and the 311 Institute, a global Futures and Deep Futures consultancy working between the dates of 2020 to 2070, and is an award winning futurist, and author of “Codex of the Future” series. Regularly featured in the global media, including AP, BBC, Bloomberg, CNBC, Discovery, RT, Viacom, and WIRED, Matthew’s ability to identify, track, and explain the impacts of hundreds of revolutionary emerging technologies on global culture, industry and society, is unparalleled. Recognised for the past six years as one of the world’s foremost futurists, innovation and strategy experts Matthew is an international speaker who helps governments, investors, multi-nationals and regulators around the world envision, build and lead an inclusive, sustainable future. A rare talent Matthew’s recent work includes mentoring Lunar XPrize teams, re-envisioning global education and training with the G20, and helping the world’s largest organisations envision and ideate the future of their products and services, industries, and countries. Matthew's clients include three Prime Ministers and several governments, including the G7, Accenture, Aon, Bain & Co, BCG, Credit Suisse, Dell EMC, Dentons, Deloitte, E&Y, GEMS, Huawei, JPMorgan Chase, KPMG, Lego, McKinsey, PWC, Qualcomm, SAP, Samsung, Sopra Steria, T-Mobile, and many more.

Your email address will not be published. Required fields are marked *