0

WHY THIS MATTERS IN BRIEF

Cold fusion is science fiction, but a new breakthrough could edge it from being theoretical to possible.

 

Love the Exponential Future? Join our XPotential Community, future proof yourself with courses from XPotential Universityconnect, watch a keynote, or browse my blog.

One of Google’s odder bets over the years was the $10 million development of an Artificial Intelligence (AI) that could tell them whether or not cold fusion, the process by which nuclear fusion can occur at close to room temperatures, was feasible. And after a few years they shut the project down because the answer seemed to be, for all intents and purposes, no.

 

RELATED
BP announces plans to build the UK's biggest hydrogen plant

 

However, in today’s world the word impossible is just two letters too long, and recently an increasing number of studies are now proposing that cold fusion reactions could be triggered more easily through a mechanism involving muons – elementary particles with the same charge as electrons, but with around 200 times their mass.

In a study published in EPJ D researchers led by Francisco Caruso at the Brazilian Center for Research in Physics have shown theoretically how this process would unfold within the strange world of 2D systems – whch are literally as they sound.

 

RELATED
It's electric, US to cover 25,000 miles of roads with charging stations

 

Now it’s believed that the team’s results could finally lead to long awaited advances in the field of cold fusion which has been proposed for decades as an efficient, sustainable way to harvest vast amounts of pollution free energy. Since muons are so much heavier than electrons, they will orbit far closer to atomic nuclei when captured by hydrogen atoms. This enables the nuclei to fuse into helium far more readily – after which the muon is released from the system.

However, since the amount of energy released is relatively small, it has remained challenging for theoretical physicists to propose a reliable basis for the technique, limiting its progress so far.

 

RELATED
Spray on solar panels and solar skins push green energy to the next level

 

Caruso’s team took a different approach in their study though – this time, focusing on calculating the elementary processes involved in muon-catalysed fusion in 2D. The researchers then compared the behaviour of their model with 3D measurements, which revealed that the 2D process is influenced by significantly different parameters.

Most strikingly, they showed that fusion is 1 billion times more likely to occur between a muonic pair of tritium atoms, a form of hydrogen containing two extra neutrons in its nucleus, than is the case for 3D – and that’s the breakthrough that all of a sudden could flip the whole field on its head. By directly calculating these probabilities, instead of estimating them, the team’s findings could provide valuable insights for future studies of cold fusion, but it will still be a very long time before we see the first cold fusion reactors spun up. If ever …

About author

Matthew Griffin

Matthew Griffin, described as “The Adviser behind the Advisers” and a “Young Kurzweil,” is the founder and CEO of the World Futures Forum and the 311 Institute, a global Futures and Deep Futures consultancy working between the dates of 2020 to 2070, and is an award winning futurist, and author of “Codex of the Future” series. Regularly featured in the global media, including AP, BBC, Bloomberg, CNBC, Discovery, RT, Viacom, and WIRED, Matthew’s ability to identify, track, and explain the impacts of hundreds of revolutionary emerging technologies on global culture, industry and society, is unparalleled. Recognised for the past six years as one of the world’s foremost futurists, innovation and strategy experts Matthew is an international speaker who helps governments, investors, multi-nationals and regulators around the world envision, build and lead an inclusive, sustainable future. A rare talent Matthew’s recent work includes mentoring Lunar XPrize teams, re-envisioning global education and training with the G20, and helping the world’s largest organisations envision and ideate the future of their products and services, industries, and countries. Matthew's clients include three Prime Ministers and several governments, including the G7, Accenture, Aon, Bain & Co, BCG, Credit Suisse, Dell EMC, Dentons, Deloitte, E&Y, GEMS, Huawei, JPMorgan Chase, KPMG, Lego, McKinsey, PWC, Qualcomm, SAP, Samsung, Sopra Steria, T-Mobile, and many more.

Your email address will not be published. Required fields are marked *