89 views
0

WHY THIS MATTERS IN BRIEF

Today’s quantum computers have less than 100 qubits and generate huge amounts of heat that reduce their computing accuracy, so we need new tech if we’re going to create bigger quantum computers with thousands or millions of qubits.

 

Interested in the future and want to experience even more?! eXplore More.

If we are ever going to be able to harness the immense power of quantum computers, computers that are over 100 million times more powerful than today’s computers, properly, then the results they have to produce from their computations are going to have to be accurate. And that’s a problem because today almost every quantum computer that’s being developed suffers from a noise problem at the quantum level, which is why Microsoft, for example, are experimenting with majorana fermions to create their highly accurate quantum computers, and it’s also why quantum computers have to be maintained in cryogenic chambers held at near Absolute Zero to minimise the likelihood of their qubits, the quantum equivalent of binary digits, inadvertently flipping states to give the wrong answer, which, as you can imagine, is another headache.

 

RELATED
Researchers claim new ultrasonic fingerprint scanner is unhackable

 

This week Google announced their new quantum controller, a new type of device that can help create more accurate quantum computers without any of the major downsides of today’s quantum computer control electronics, and the company says it’s “made significant progress toward an efficient, reliable, and scalable means of controlling quantum systems’ electronics,” systems it hopes will someday solve computationally complex problems beyond the reach of even today’s most powerful classical machines and supercomputers.

At the International Solid State Circuits Conference in San Francisco, researchers on the company’s AI Quantum team unveiled an entirely new type of cryogenic controller fabricated using CMOS technology and designed in partnership with University of Massachusetts professor Joseph Bardin. Google says the 1 millimeter by 1.6 millimeter controller, which provides an instruction set for single qubit operations, runs at between room temperature and 3 degrees Kelvin, which is about -454.27 degrees Fahrenheit, and consumes less than 2 milliwatts of power – 1,000 times less power than Google’s current control electronics.

 

RELATED
Estonia becomes the world's first virtual nation capable of rebooting itself

 

Currently, Google runs programs on its prototypical 72 qubit Bristlecone quantum processor by applying gigahertz-frequency analog signals produced by digital-to-analog waveform generators packaged in server room racks. These signals travel along coaxial cables to the processor’s qubits, manipulating their states and measuring the outcomes. Each qubit has two control lines for a total of 144 unique control signals, and the generators dissipate about a watt of waste heat per qubit — an arrangement that isn’t particularly conducive to chips containing more qubits. Research suggests that first-generation quantum computers will require as many as 1 million qubits, and Google estimates that just 150 waveform generators could overwhelm its cooling system by 1,500 times.

Google’s new custom integrated circuits, by contrast, control qubits from within the cooling system, reducing the number of physical connections needed to and from quantum processors. According to Google, baseline experiments for the controller hardware show “similar” performance compared with its standard qubit control electronics.

 

RELATED
Ethereum falls after rumours of new powerful ASIC emerge

 

Bardin and Erik Lucero, staff research scientist and hardware lead on Google’s AI Quantum Team, caution that it’s merely a first step toward a “truly scalable” qubit management system — the controller only addresses a single qubit, and it still requires several connections to room temperature. Still, they say it’s promising progress in the pursuit of reducing the energy required to control qubits while maintaining the control required to perform “high-quality” qubit operations.

“Increasing the number of physical qubits needed for a fault-tolerant quantum computer while maintaining high-quality control of each qubit are intertwined,” Bardin and Lucero wrote in a blog post, “and exciting technological challenges that will require inventions beyond simply copying and pasting our current control architecture.”

Source: Google

About author

Matthew Griffin

Matthew Griffin, described as “The Adviser behind the Advisers” and a “Young Kurzweil,” is the founder and CEO of the World Futures Forum and the 311 Institute, a global Futures and Deep Futures consultancy working between the dates of 2020 to 2070, and is an award winning futurist, and author of “Codex of the Future” series. Regularly featured in the global media, including AP, BBC, CNBC, Discovery, RT, and Viacom, Matthew’s ability to identify, track, and explain the impacts of hundreds of revolutionary emerging technologies on global culture, industry and society, is unparalleled. Recognised for the past six years as one of the world’s foremost futurists, innovation and strategy experts Matthew is an international speaker who helps governments, investors, multi-nationals and regulators around the world envision, build and lead an inclusive, sustainable future. A rare talent Matthew’s recent work includes mentoring Lunar XPrize teams, re-envisioning global education and training with the G20, and helping the world’s largest organisations envision and ideate the future of their products and services, industries, and countries. Matthew's clients include three Prime Ministers and several governments, including the G7, Accenture, Bain & Co, BCG, Credit Suisse, Dell EMC, Dentons, Deloitte, E&Y, GEMS, Huawei, JPMorgan Chase, KPMG, Lego, McKinsey, PWC, Qualcomm, SAP, Samsung, Sopra Steria, T-Mobile, and many more.

Your email address will not be published. Required fields are marked *