0

WHY THIS MATTERS IN BRIEF

With the advent of personalised medicine and new revolutionary gene  treatments, being able to interpret and make sense of the vast volumes of human genomic data in order to better predict disease indicators and outcomes, and provide patients with better treatments, will become increasingly crucial.

 

15 years since scientists first successfully sequenced the human genome thousands of research teams around the world are still trying to make sense of the huge data trove, and while the scale of the challenge is a formidable one for humans it’s a comparative walk in the park for some of today’s more advanced Artificial Intelligence (AI) platforms.

 

RELATED
New smartphone app lets users detect fatal heart conditions at home

 

Last week Google announced the release of “DeepVariant,” a new AI tool that uses the latest AI techniques to compile a more accurate picture of a person’s entire genome from the masses of sequenced data. The result is a platform that turns high throughput sequencing readouts into a picture of a person’s full genome, and that can even automatically identify small insertion and deletion mutations and single base pair mutations in the data. Something that in an age, where we are now at the very start of re-writing a living person’s DNA in vivo, such as the recent experiment to cure Brian Madeaux’s inherited disease, Hunters Syndrome, will become an increasingly important, if not vital capability.

High throughput genome sequencing first became widely available in the early 2000’s and it’s since helped to democratise the genome sequencing process, but in the past the data produced using such systems offered only a limited, error prone snapshot of a person’s full genome, and even now it’s still hard for scientists to identify the small mutations and random errors generated during the sequencing process that might have a direct impact on a person’s propensity to develop a variety of diseases, including Cancer.

While a number of tools already exist for interpreting readouts, including GATK, VarDict, and FreeBayes these software programs typically use simpler statistical and machine learning approaches to identify mutations by attempting to rule out read errors.

 

RELATED
Human on a chip development signals the end of animal testing

 

“One of the challenges is in difficult parts of the genome, where each of the [tools] has strengths and weaknesses,” says Brad Chapman, a research scientist at Harvard University who tested an early version of DeepVariant, “these difficult regions are increasingly important for clinical sequencing, and it’s important to have multiple methods.”

DeepVariant was developed by researchers from the Google Brain team, a group that focuses on developing and applying AI techniques, and Verily, a multi-billion dollar Alphabet subsidiary that focuses on life sciences.

The team collected millions of high-throughput reads and fully sequenced genomes from the Genome in a Bottle (GIAB)  project, a public private effort to promote genomic sequencing tools and techniques and then fed the data into their deep learning system, painstakingly tweaking their models parameters until it learned to accurately interpret the sequenced. Then, last year, DeepVariant won first place in the PrecisionFDA Truth Challenge, a contest run by the FDA to promote more accurate genetic sequencing.

“The success of DeepVariant is important because it demonstrates that in genomics, deep learning can be used to automatically train systems that perform better than complicated hand engineered systems,” says Brendan Frey, CEO of Deep Genomics.

 

RELATED
China is using autonomous 3D printers and robots to print a giant hydroelectric dam

 

The release of DeepVariant is also the latest sign that AI may be poised to boost progress in genomics, and Deep Genomics is one of several companies trying to use new AI tools and techniques, such as deep learning, to tease out genetic causes of diseases and to identify potential drug therapies.

Frey then went on to say that he thinks AI will eventually go well beyond helping to sequence genomic data.

“The gap that is currently blocking medicine right now is in our inability to accurately map genetic variants to disease mechanisms and to use that knowledge that help us rapidly identify life saving therapies and treatments,” he says.

DeepVariant will be available on the Google Cloud Platform next year.

About author

Matthew Griffin

Matthew Griffin, described as “The Adviser behind the Advisers” and a “Young Kurzweil,” is the founder and CEO of the World Futures Forum and the 311 Institute, a global Futures and Deep Futures consultancy working between the dates of 2020 to 2070, and is an award winning futurist, and author of “Codex of the Future” series. Regularly featured in the global media, including AP, BBC, Bloomberg, CNBC, Discovery, RT, Viacom, and WIRED, Matthew’s ability to identify, track, and explain the impacts of hundreds of revolutionary emerging technologies on global culture, industry and society, is unparalleled. Recognised for the past six years as one of the world’s foremost futurists, innovation and strategy experts Matthew is an international speaker who helps governments, investors, multi-nationals and regulators around the world envision, build and lead an inclusive, sustainable future. A rare talent Matthew’s recent work includes mentoring Lunar XPrize teams, re-envisioning global education and training with the G20, and helping the world’s largest organisations envision and ideate the future of their products and services, industries, and countries. Matthew's clients include three Prime Ministers and several governments, including the G7, Accenture, Aon, Bain & Co, BCG, Credit Suisse, Dell EMC, Dentons, Deloitte, E&Y, GEMS, Huawei, JPMorgan Chase, KPMG, Lego, McKinsey, PWC, Qualcomm, SAP, Samsung, Sopra Steria, T-Mobile, and many more.

Your email address will not be published. Required fields are marked *