0

WHY THIS MATTERS IN BRIEF

Traditionally fossil fuels were made from dead dinosaurs, today though they can be made from Sunshine and are more environmentally friendly.

 

Love the Exponential Future? Join our XPotential Community, future proof yourself with courses from XPotential University, read about exponential tech and trendsconnect, watch a keynote, or browse my blog.

By combining several optical and chemical-processing innovations, a European consortium is developing a pilot  system that will turn carbon dioxide and green hydrogen into fuels around the clock, using sunlight, artificial lighting, and plasmonics.

 

RELATED
Bacteria manage to recycle plastic into vanilla flavouring in weird world first

 

The reactor that the project, called Spotlight, is designed to work with the concentrated carbon dioxide stream from small- to medium-emission sources, which emit less than 1 megaton of carbon dioxide a year, and the end result will be methane and carbon monoxide, which can be turned into the fuel methanol.

“If it all turns out as we envision, it would be a really good technology to implement at chemical plants for decarbonization,” says Nicole Meulendijks of the Netherlands Organization for Applied Scientific Research (TNO), which is coordinating the project.

The project is one of many underway worldwide to make solar fuels. The goal is to use the sun’s energy to drive chemical reactions that can convert substances like water, carbon dioxide, nitrogen, and hydrogen into fuels. Solar fuels offer a way to bottle solar energy for long periods of time and then use it wherever, whenever. But known methods aren’t efficient enough to produce the fuels at a cost that’s competitive with petroleum-derived fuels.

 

RELATED
Chip sized particle accelerators will make renewable energy even cheaper

 

Artificial photosynthesis, which mimics the chemical processes in plants, is one heavily studied approach to produce solar fuels from abundant sources like carbon dioxide and water. Sun-to-LiquidA-Leaf, and SofiA are some of the projects funded by the E.U. that have tried to develop and scale up solar fuel plants based on artificial photosynthesis.

Spotlight meanwhile uses an alternative technology, says Meulendijks. To start with the consortium includes parties across the entire value chain, from catalyst and photonic-device manufacturing to companies that provide green hydrogen and carbon dioxide. The partners have expressed their intention to commercially engage beyond research, she adds, which makes the final concept easier to take out of the laboratory and into the field.

The technologies involved cover the gamut, too. Sunlight will be harnessed using a solar oven built at the German Aerospace Center. The furnace is a large flat mirror that sends sunlight to a honeycomb-like array of movable hexagonal mirrors that concentrate the light by up to 5,000 times onto a reactor.

 

RELATED
Smog and waste push China to cancel the roll out of 103 coal fired power stations

 

The reactor is a see-through device composed of two glass plates with flow channels sandwiched between them. The channels will be packed with a plasmonic catalyst material that the consortium researchers are developing. It is made of gold or other plasmonic metal nanoparticles that absorb specific wavelengths of sunlight and convert it locally into heat, which will drive the chemical reactions that convert the carbon dioxide and hydrogen pumped into the flow channels into fuel.

Unlike other solar fuels projects, which use concentrated sunlight to directly heat up a reactor, Spotlight’s use of plasmon catalysts to convert sunlight into heat means that the absorption spectrum can be tuned by changing the type of metal and the size and shape of the nanoparticles, Meulendijks says.

“A mixture of different sizes and shapes of plasmon catalysts can easily cover the entire solar spectrum, which makes it possible to use all sunlight for the chemical process of choice.”

 

RELATED
NASA's green rocket fuel is less harmful to the environment, and can be FedEx'd

 

The plasmonic heating process is also why the system can get away with using a small array of mirrors rather than the vast fields of mirrors or lenses used to produce concentrated heat for conventional solar fuels. “The amount of land use is minimum,” Meulendijks says. “For example, an area of one to three [soccer] fields is needed for the photonic devices, which is feasible at chemical plant sites.”

Another unique feature of the Spotlight project is its endeavor to produce fuel for 24 hours, rain or shine. So as not to be limited by when the sun is shining, the consortium is developing LED-based light sources that emulate the sun. Lighting products leader Signify in Eindhoven, formerly Philips Lighting, is in charge of this. The challenge is to have the artificial light source mimic solar light as much as possible, and to adapt it completely to the spectrum of the catalyst material, says Meulendijks.

 

RELATED
Researchers have created an AI universal translator for pigs

 

Now slightly over a year into the three-year project, the team is trying to optimize the reactor. For instance, they’re figuring out how to pack the thin channels with as much catalyst powder as possible while still flowing gas through it as efficiently as possible.

In another five months, project members aim to have all the separate components – the reactor, light source, and catalyst materials – ready to be integrated together and tested at the German Aerospace Center at pilot scale.

If successful, Meulendijks says, the system has the potential to scale up to tackle much loftier ambitions. Ultimately at stake is the carbon emissions from the roughly 11,000 small-to-medium CO2 sources around the world, she says. Those sources all together emit about 2.7 billion tonnes of carbon dioxide annually and account for 16 percent of emissions from all point sources.

About author

Matthew Griffin

Matthew Griffin, described as “The Adviser behind the Advisers” and a “Young Kurzweil,” is the founder and CEO of the World Futures Forum and the 311 Institute, a global Futures and Deep Futures consultancy working between the dates of 2020 to 2070, and is an award winning futurist, and author of “Codex of the Future” series. Regularly featured in the global media, including AP, BBC, Bloomberg, CNBC, Discovery, RT, Viacom, and WIRED, Matthew’s ability to identify, track, and explain the impacts of hundreds of revolutionary emerging technologies on global culture, industry and society, is unparalleled. Recognised for the past six years as one of the world’s foremost futurists, innovation and strategy experts Matthew is an international speaker who helps governments, investors, multi-nationals and regulators around the world envision, build and lead an inclusive, sustainable future. A rare talent Matthew’s recent work includes mentoring Lunar XPrize teams, re-envisioning global education and training with the G20, and helping the world’s largest organisations envision and ideate the future of their products and services, industries, and countries. Matthew's clients include three Prime Ministers and several governments, including the G7, Accenture, Aon, Bain & Co, BCG, Credit Suisse, Dell EMC, Dentons, Deloitte, E&Y, GEMS, Huawei, JPMorgan Chase, KPMG, Lego, McKinsey, PWC, Qualcomm, SAP, Samsung, Sopra Steria, T-Mobile, and many more.

Your email address will not be published. Required fields are marked *