IBM sets a small record as researchers store one bit of data on one atom IBM sets a small record as researchers store one bit of data on one atom
WHY THIS MATTERS IN BRIEF The amount of information society is creating every day is leaving today’s storage technologies creaking at the seams, and... IBM sets a small record as researchers store one bit of data on one atom


  • The amount of information society is creating every day is leaving today’s storage technologies creaking at the seams, and our only option is to go smaller


The building blocks of today’s modern computers have been getting progressively smaller ever since they were first invented, but now, as we create and design new 1nm scale transistors and computers that are smaller than viruses, and harness quantum mechanics to create next generation quantum computers, IBM have managed to go one better. They’ve managed to store one bit of data on one atom.


Californian sculpture desalinates 1.5 billion gallons of drinking water


For now though the advance might be more symbolic than practical because of the complexity, and cost involved of commercialising the technology, but it’s a great way to show what the future holds for storage, and it’s another example of science fiction turning into science fact – along with deflector shields, laser weapons, tractor beams and replicators.

Atoms are the smallest unit of matter, and to put this into perspective this week researchers managed to store a movie, and several other things, on the nucleotides of DNA – a record in its own right – which are made up of thirty atoms, and a few months ago researchers managed to cram 10 bits onto a photon – yes, a photon! Meanwhile today’s state of the art solid state drives can hold a single bit of information in 100,000 atoms, which all in all means that IBM’s latest announcement trumps them all – by a very wide margin.

IBM’s breakthrough involved a single Holmium atom – a large atom that has lots of unpaired electrons – that was set on a bed of magnesium oxide. In this configuration, the atom has what’s called magnetic bistability, in other words, it has two stable magnetic states each with different spins.

The researchers used a scanning tunnelling microscope to apply 150 millivolts at 10 microamps to the atom, and while that doesn’t sound like a lot when you’re an atom that’s like being hit by lightening. This huge influx of electrons caused the Holmium atom to switch its magnetic spin state, and because the two states have different conductivity profiles, the microscope’s tip managed to detect which state the atom was in by applying a lower voltage, about 80 millivolts, and sensing its resistance.


Jeff Bezos announces plans to create the world's first Moon delivery service


In order to be absolutely sure though that the atom was changing its magnetic state, and thereby “holding data,” and that this wasn’t just some random interference the researchers laid it next to an iron atom. Iron atoms are affected by their local “magnetic neighbourhoods” and the iron atom acted differently to the Holmium atom when probed, which proved the experiment truly created a lasting, stored magnetic state in a single atom that can be detected indirectly.

And bingo – there you have it. One bit. One atom. One record.

Matthew Griffin Global Futurist 未来学家, Tech Evangelist, XPrize Mentor ● Int'l Keynote Speaker ● Disruption, Futures and Innovation expert

Matthew Griffin, Futurist and Founder of the 311 Institute is described as “The Adviser behind the Advisers.” Among other things Matthew keeps busy helping the world’s largest smartphone manufacturers ideate the next five generations of smartphones, and what comes beyond, the world’s largest chip makers envision the next twenty years of intelligent machines, and is helping Europe’s largest energy companies re-invent energy generation, transmission and retail. Recognised in 2013, 2015 and 2016 as one of Europe’s foremost futurists, innovation and strategy experts Matthew is an award winning author, entrepreneur and international speaker who has been featured on the BBC, Discovery and other outlets. Working hand in hand with accelerators, investors, governments, multi-nationals and regulators around the world Matthew helps them envision the future and helps them transform their industries, products and go to market strategies, and shows them how the combination of new, democratised, powerful emerging technologies are helping accelerate cultural, industrial and societal change. Matthew’s clients include Accenture, Bain & Co, Bank of America, Blackrock, Booz Allen Hamilton, Boston Consulting Group, Dell EMC, Dentons, Deutsche Bank, Deloitte, Deutsche Bank, Du Pont, E&Y, Fidelity, Goldman Sachs, HPE, Huawei, JP Morgan Chase, KPMG, Lloyds Banking Group, McKinsey & Co, PWC, Qualcomm, Rolls Royce, SAP, Samsung, Schroeder’s, Sequoia Capital, Sopra Steria, UBS, the UK’s HM Treasury, the USAF and many others.

Your email address will not be published. Required fields are marked *

Translate page »

Pin It on Pinterest

Share This