Scroll Top

New heat resistant material shatters records

WHY THIS MATTERS IN BRIEF

  • As we push the boundaries and create new, more powerful nuclear reactors, and faster vehicles, protecting them from thermal harm becomes increasingly important, this breakthrough could mean more powerful reactors and faster hypersonic vehicles


 

A team of researchers in the UK have discovered that tantalum carbide and hafnium carbide materials can withstand scorching temperatures of nearly 4,000 degrees Celsius.

In particular, the team from Imperial College London discovered that the melting point of hafnium carbide is the highest ever recorded for a material. Being able to withstand temperatures of nearly 4,000°C could pave the way for both materials to be used in ever more extreme environments, such as in heat resistant shielding for the next generation of civilian and military hypersonic vehicles and nuclear reactors.

 

RELATED
California utility finds a novel way to bring hydrogen energy to the masses fast

 

Tantalum carbide (TaC) and hafnium carbide (HfC) are refractory ceramics, meaning they are extraordinarily resistant to heat. Their ability to withstand extremely harsh environments means that refractory ceramics could be used in thermal protection systems on high speed vehicles and as fuel cladding in the super heated environments of nuclear reactors. However, there hasn’t been the technology available to test the of TaC and HfC in the lab to determine how truly extreme an environment they could function in.

The researchers of the study, which is published in the journal Scientific Reports, developed a new extreme heating technique using lasers to test the heat tolerance of TaC and HfC. They used the laser heating techniques to find the point at which TaC and HfC melted, both separately and as mixed compositions of both.

They found that the mixed compound (Ta0.8Hf0.20C) was consistent with previous research, melting at 3,905°C, but the two compounds on their own exceeded previous recorded melting points. The compound TaC melted at 3,768°C and HfC melted at 3,958°C.

Dr Omar Cedillos-Barraza, who is currently an Associate Professor at the University of Texas in El Paso, carried out the study while doing his PhD at Imperial’s Department of Materials.

“The friction involved when travelling above Mach 5 – hypersonic speeds – creates very high temperatures. So far, TaC and HfC have not been potential candidates for hypersonic aircraft, but our new findings show that they can withstand even more heat than we previously thought – more than any other compound known to man. This means that they could be useful materials for new types of spacecraft that can fly through the atmosphere like a plane, before reaching hypersonic speeds to shoot out into space. These materials may enable spacecraft to withstand the extreme heat generated from leaving and re-entering the atmosphere,” said Dr Cedillos-Barraza.

 

RELATED
New 3D graphene is as light as air and ten times stronger than steel

 

Examples of potential uses for TaC and HfC could be used in nose caps for spacecraft, and as the edges of external instruments that have to withstand the most friction during flight.

Currently, vehicles going over Mach 5 speeds don’t carry people, but Dr Cedillos-Barraza suggests it may be possible in the future.

“Our tests demonstrate that these materials show real promise in the engineering of space vehicles of the future. Being able to withstand such extreme temperatures means that missions involving hypersonic spacecraft may one day be manned missions. For example, a flight from London to Sydney may take about 50 minutes at Mach 5, which could open a new world of commercial opportunities for countries around the world,” he added.

Related Posts

Comments (1)

Leave a comment

EXPLORE MORE!

1000's of articles about the exponential future, 1000's of pages of insights, 1000's of videos, and 100's of exponential technologies: Get The Email from 311, your no-nonsense briefing on all the biggest stories in exponential technology and science.

You have Successfully Subscribed!

Pin It on Pinterest

Share This